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Preface

Maurice Auslander passed away on November 18, 1994, in Trondheim, Nor-
way at the age of sixty-eight. A memorial conference was held in his honor
March 24-26, 1995 at Brandeis University. Over seventy people from all over
the world attended the conference to show their respect for this remarkable
mathematician and for his accomplishments. This feeling was shared by
many others.

The variety of topics covered at the conference reflects the breadth of Mau-
rice Auslander’s contribution to mathematics, which includes commutative
algebra and algebraic geometry, homological algebra and representation the-
ory. He was one of the founding fathers of homological ring theory and
representation theory of Artin algebras. Undoubtedly, the most character-
istic feature of his mathematics was the profound use of homeological and
functorial techniques.

The Memorial Service was held on March 24. Appreciation of various sides of
Maurice’s personality could be felt throughout the morning of shared mem-
ories. From the kind man as seen by one little boy to the unapproachable
man in the eyes of others, Maurice had left impressions in the lives of many.
Initial fears by students later turned into lasting friendships. Those famous
early morning phone calls, his sudden appearances at the offices of students
and colleagues, long walks in many cities and countries, all became nostalgic
memories. Yet his thoughtful comments and questions, and his many words
of advice are still present among those who knew him.

Perhaps it can be said that Maurice’s mathematics was a continuation of his
personality. Both were characterized by integrity, intellectual honesty, and
an everlasting persistence. Even the illness did not stop him. He insisted on
enjoying the life, friends, and mathematics until the very last days. He will
be remembered as a man who never gave up.

A. M.

G. T.

August 9, 1996
Geiranger, Norway






SOME PROBLEMS ON
THREE-DIMENSIONAL GRADED DOMAINS

M. ARTIN

1. Introduction.

One of the important motivating problems for ring theory is to describe
the rings which have some of the properties of commutative rings. In this
talk we consider this problem for graded domains of dimension 3. The
conjectures we present are based on ideas of my friends, especially of Toby
Stafford, Michel Van den Bergh, and James Zhang. However, they may not
be willing to risk making them, because only fragments of a theory exist
at present. Everything here should be taken with a grain of salt. I am
especially indebted to Toby Stafford for showing me some rings constructed
from differential operators which I had overlooked in earlier versions of this
manuscript.

To simplify our statements, we assume throughout that the ground field k
is algebraically closed and of characteristic zero, and that our graded domain
A is generated by finitely many elements of degree 1. The properties which
we single out are:

1.1.
(i) A is noetherian,
(i1) there is a dualizing complex w for A such that the Auslander conditions
hold, and
(iii) the Gelfand-Kirillov dimension behaves as predicted by commutative
algebra.

A dualizing complez w is a complex of bimodules such that the functor
M +— MP = RHom(M,w) defines a duality between the derived categories
of bounded complexes of finite left and right A-modules. We will require
it to be balanced in the sense of Yekutieli, which means that kP is the
appropiate shift of k (see [Aj,Y1,Y2] for the precise definitions). A graded
ring A with a dualizing complex satisfies the Auslander conditions if for any
finite A-module M and any submodule N C Ext?(M,w), Ext’(N,w) = 0
for p < q [Bj,Le,Y1,Y2,ASZ].

Typeset by ApS-TEX



2 ARTIN: Problems on three-dimensional graded domains

Let )
J(M) = min{j| Ext’(M,w) # 0)}.

For domains of dimension 3, the link with Gelfand-Kirillov dimension is that
gk(M) = 3 — j(M) [Le,Ye2,YZ]. Actually, the GK-dimension is not always
the right dimension to use (see [ASZ]), but it will suffice for our purposes.

Though the properties listed above are central, they will appear only
implicitly in what follows. All of them hold when A is commutative. So
our problem becomes: Which graded domains satisfy these conditions? An
answer to this question might take the form of an axiomatic description,
or of a classification. This talk concerns classification, for which I should
apologize. Maurice looked askance at what he might have called “botany”,
so the topic is not very suitable for the Auslander Conference.

Let’s begin by reviewing the commutative case. If a commutative graded
algebra A is written as a quotient k[zo, ..., z,]/I, where I is an ideal gener-
ated by some homogeneous polynomials fi,..., fr, then its associated pro-
jective scheme X = Proj A is the locus of common zeros of fi,...,fr in
projective space P*. Conversely, if we are given a projective scheme X, we
can recover a graded algebra A as follows: For n 3> 0, A, is the space of all
functions on X with pole of order < n at infinity. (The relations between
A and Proj A hold only in large degree.)

In order to proceed, we need to rewrite this description in terms of sec-
tions of invertible sheaves. Let L denote the invertible sheaf of locally
defined functions on X with pole of order < 1 at infinity. Then L®" is the
sheaf of local functions with pole of order < n, so we can identify global
functions with pole of order < n at infinity with global sections of this sheaf:
For n>» 0, A, = H°(X, L®"). Multiplication in 4 is induced by the tensor
product on L.

Van den Bergh [AV] has shown how to extend this description to con-
struct noncommutative rings. He observes that in order for L®" to be
defined, L must have both a left and a right module structure over the
structure sheaf Oy, i.e., it must be an (O, O)-bimodule. It is not necessary
that the actions on the left and on the right agree; in fact this would be
inconsistent if O weren’t commutative. But if L is a bimodule, invertible as
left and as right module, then L®" is defined, and setting B, = H°(X, L®")
yields a graded algebra B which is often noncommutative. Of course, in or-
der that B have reasonable properties, the bimodule L must satisfy a con-
dition analogous to “ampleness” of an invertible sheaf in the commutative

case (see [AV]).

The use of bimodules to define a polarization extends to certain noncom-
mutative schemes X as well. But when X is commutative, it is not difficult
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to see that the left and right actions on an invertible bimodule L differ by
an automorphism 7 of the scheme X. In other words, the right action will
be obtained from the left one by the rule

vf = fTv,

for v € L and f € O. The bimodule obtained in this way from an automor-
phism will be denoted by L., and we will use the notation B(X,, L) for
the algebra defined in this way, i.e., the algebra whose part of degree n is
B, = H%(X,L%").

We now consider a noncommutative graded domain A. Thanks to the
work of Stafford [ASt], the case that A has GK-dimension 2 is well under-
stood:

Theorem 1.2. Let B be a graded domain of GK-dimension 2 which is
finitely generated by elements of degree 1. Then:

(i) ProjB is a commutative algebraic curve. More precisely, there is
a projective algebraic curve C, an automorphism 7 of C, and an
invertible sheaf L of positive degree on C such that, for large n,
B, = H°(C,L%").

(ii) The algebra B has the desired properties 1.1.

Note that this theorem is free of extraneous hypotheses, except for the
requirement that A be generated in degree 1, which may seem artificial.
In fact, as is explained in [ASt], the situation becomes considerably more
complicated when this requirement is dropped.

Following the example of the Italian algebraic geometers at the end of
the last century, we may attempt to classify the noncommutative projective
surfaces which arise as Proj A, for certain graded domains of GK-dimension
3. The object of this talk is to present a conjecture about them.

2. Examples of graded domains of GK-dimension 3.

There are many examples which show that Theorem 1.2 does not extend
directly to higher dimension. It is true that one can construct noncommu-
tative domains of GK-dimension 3 analogous to those of GK-dimension 2
by means of a suitable commutative algebraic surface X, automorphism r,
and invertible sheaf L. But other noncommutative domains exist, and those
are the ones that one would like to describe. Here are four basic types:

Example 2.1. Algebras finite over their centers.

Algebras which are finite over their centers can be constructed quite simply
from orders. Let K be the function field of a projective algebraic surface
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S, and let D be a division ring with center K and finite over K. Let
A be an Og-order in D. One obtains a noncommutative scheme X =
Spec A by gluing the rings of sections of A over affine open sets of Z, using
central localizations. Then a graded ring A finite over its center can be
defined as follows: Let L denote the sheaf O(1) on S, and set A(n) =
ARo L®" ~ A(1)®4® - ®4-A(1). Then 4, = H°(S, A(n)). Other rings,
not necessarily finite over their centers, can be constructed using (A, A)-
bimodules which which are not central.

Example 2.2. Auslander regular algebras of dimension 3.

A graded domain A of finite global dimension which satisfies the Aus-
lander conditions is called an Auslander regular algebra (see[Le]). The
Auslander regular algebras of dimension 3 have been classified completely
[ASch,ATV], and Schelter’s Sklyanin algebras are the most interesting ones
among them. These are the three-dimensional analogues of some well-known
four-dimensional algebras defined by Sklyanin [Skl]. A Sklyanin algebra
A = A(E, o) of dimension 3 can be defined in a somewhat mysterious way,
in terms of an elliptic curve E embedded as a cubic in P? and a transla-
tion ¢ of E. The associated projective scheme Proj A is a deformation of
the projective plane: a quantum plane [Ar]. The other Auslander regular
algebras of dimension 3, and their associated quantum planes, are obtained
from automorphisms of singular plane cubics.

Example 2.3. Polynomial extensions of domains of GK-dimension 2.

Here B is a graded domain of GK-dimension 2 and A = Bz], where z
is a central variable of degree 1. By Theorem 1.2, B has the form of a
twisted homogeneous coordinate ring of a curve: B = B(C,r,L). If the
automorphism 7 of C has infinite order, then neither B nor A is PL. In
this case, C' will be rational or elliptic, and if it is elliptic, then 7 will be a
translation. The case that 7 is a translation of infinite order on an elliptic
curve is especially interesting.

Example 2.4. Homogenized differential operator rings.

This example is due to Stafford. Let C be a nonsingular curve with structure
sheaf O, and let D denote the sheaf of rings of differential operators on C.
If £ denotes a local parameter at a point p € C, then locally at p, D has
the form O,(y), where y is the derivation ﬁ-, and yz = zy + 1. We choose
a point po on C, and consider the subsheaf D' of D which is equal to D
except at the point po, and which is generated by yo = l‘od—:; at that point,
zo being a local parameter. Thus the relation yozo = zoyo + zo holds at
po. This relation shows that, locally, zo is a normal element of D', which is
the reason that we replace D by D’. We homogenize the defining relation
of D' using a central variable z, to obtain a sheaf of graded rings A which
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has the local form O,(y, z), with the defining relation yozo = zoyo + zoz
at po and yr = zy + z at all other points. The subsheaf A, of elements
of degree n is isomorphic to the sheaf of differential operators which are
in D' and which have order € n. Locally at the point pg, the element ¢
normalizes A. We choose an integer r > 29 — 2 and we denote by L,, the
right O-module of sections of 4, with pole of order nr at pg. So locally
at po, a section of £, can be written in the form a,zy"", where a, € A,.
Because z¢ is normalizing, multiplication sends £,, x £, = Ly4n, S0 we
obtain a graded ring A by setting A, = H%(C,L,).

There are many other interesting graded domains of dimension 3, for
example the quantum guadrics which are obtained from Sklyanin algebras
of dimension 4 by dividing by a central element of degree 2 [Sm, SStd].

3. A General Description of X = Proj A.

Let A be a noetherian graded ring, and let C denote the category of
finitely generated, graded, right A modules, modulo the subcategory of
torsion modules (modules finite-dimensional over k). This category C = gr-
A/(torsion) can also be described as the category of tails Mso of finitely
generated graded A-modules. By definition, the projective scheme X =
Proj A associated to A is the triple (C, O, s), where O is image in C of the
right module A4, and s is the autoequivalence of C defined by the shift
operator on graded modules [AZ,Ma,Ve]. Working out the consequences of
this definition is an ongoing program, and we will not need to consider it
in detail. However, we need to review some geometric concepts, namely
of points and fat points. Following tradition, we assume that X = Proj A
is smooth. This means that C has finite injective dimension, or that for
every finite graded A-module M and for ¢ > 2, the graded injectives I? in a
minimal resolution 0 = M — I° — I' — ... are sums of the injective hull

of k.

Our conditions 1.1 imply that the ring A can be recovered, in sufficiently
large degree, from its associated projective scheme. This means that Zhang’s
condition x, that Ext?(k, M) is finite dimensional for all finite modules M,
holds for A [YZ].

The tail of a critical module M of GK-dimension 1 is called a fat point
of X. Fat points are the projective analogs of finite dimensional represen-
tations of a ring [Sm,SSts]. If the stable Hilbert function dim My, n > 0,
is the constant function 1, so that M has multiplicity 1, then the tail My,
is called a point of X.

We say that X is finite over its center if there is a commutative algebraic
surface S and a coherent Og-algebra A such that X is isomorphic to the
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relative scheme Spec A over S, as in Example 2.1. Specifically, this means
that C is equivalent to the category of coherent as Og-modules with a right
A-module structure, and that s is an ample autoequivalence of C.

In all known examples of graded domains of GK-dimension 3 which satisfy
1.1 and such that X = Proj A is not finite over its center, the scheme X has
some remarkable properties:

3.1. There is a quotient B = A/I of A of pure GK-dimension 2, such that:
(i) Y = Proj B is a commutative projective curve, possibly reducible,
whose points are points of X.
(ii) X has only finitely many fat points in addition to the pointson Y. In
particular, X has only finitely many fat points of multiplicity # 1.
(iii) The complement of Y in X is an affine open subscheme. In other
words, there is a finitely generated noetherian domain R such that
X — Y = SpecR, or that the category mod-R of finite R-modules is
equivalent with the quotient category gr-A/(I — torsion).

A priori, it is not clear that Proj A should have any points at all. Thisis a
puzzling point.

4. A Conjecture.

The graded quotient ring of a graded Ore domain A has the form Q(A) =
D|z,271, ¢], where D is a division ring and ¢ is an automorphism of D
[NV]. We will refer to the division ring D as the function field of the scheme
X = Proj A, and we will say that two such schemes X, X’ are birationally
equivalent if their function fields are isomorphic extensions of k. If X is
birational to a quantum plane (Example 2.2) we call it a g-rational surface.
If X is birational to one of the surfaces listed in Examples 2.3,2.4 and in
which the curve C has genus g > 0, we call it g-ruled. (There is an intrinsic
definition of g-ruled surface in terms of “bimodule algebras” over a curve

[VdB1].)

Conjecture 4.1. Let k be an algebraically closed field of characteristic
zero, and let A be k-algebra of GK-dimension 3 satisfying the properties
1.1. Then X = ProjA is birationally equivalent to ProjA’, where A’ is
one of the graded domains described in Examples 2.1-2.4. So one of the
following holds:

(i) X is finite over its center,

(ii}) X is g-rational, or

(iii) X is g-ruled.

The properties 1.1 are included as hypotheses in this conjecture. Ideally,
we would like them to be consequences of more basic assumptions on the
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structure of A, as is the case in dimension 2 (see Theorem 1.2). However,
we don’t know what the necessary assumptions are. At this stage of our
knowledge, any reasonable hypotheses on the structure are acceptable.

A finer classification would subdivide (i) into two classes:

4.2.
(ia) A finite over its center, and
(ib) A not finite over its center, but X finite over its center.

The possibilities for (ib) can be enumerated conjecturally as well. They
include cases in which X is a commutative surface, such as an abelian
surface, which has a continuous group of automorphisms. (See the last
section of [AV] in this connection.)

It is interesting to note that PI algebras appear as a natural class of
rings in Conjecture 4.1. Indeed, the PI case (ia) should be viewed as the
“general” one. It corresponds roughly to the class of commutative surfaces
of Kodaira dimension > 0, though PI algebras also appear as special cases
in (ii),(iii). There is no hope of listing these rings.

For those of us who are interested in describing noncommutative phe-
nomena, it may, at first glance, seem a bit disappointing to think that
rational and ruled surfaces could be the only ones which have noncommu-
tative analogues not finite over their centers. One must remember that the
most beautiful results of the Italian school, such as the numerical charac-
terizations of rational and ruled surfaces of Castelnuovo and Enriques, and
Castelnuovo’s theorem on the rationality of plane involutions, concern pre-
cisely these surfaces. Whether the conjecture is correct or not, extending
those results to the noncommutative setting is a worthy goal for people
working in ring theory.

5. The Division Rings.

Since Conjecture 4.1 concerns only the birational equivalence classes of
noncommutative surfaces, it can be stated in terms of their function fields.
Here is a list of the division rings which are predicted by the conjecture:

List of Division Rings 5.1. In this list, k is assumed algebraically closed,
of characteristic zero, o denotes a translation by a point of infinite order of
an elliptic curve E, and q € k* is not a root of unity.

1. division rings which are finite algebras over function fields of transcen-
dence degree 2.
2. g-rational division rings:

(a) kq(z,y), the field of fractions of the q-plane yz = qzy.



8 ARTIN: Problems on three-dimensional graded domains

(b) the Sklyanin division ring S(E,c), the degree zero part of the graded
field of fractions of the Sklyanin algebra A(E, ).
(c) Dy, the field of fractions of the Weyl algebra.
3. g-ruled division rings:
(a) K(E,a), the field of fractions of the Ore extension k(E)[t,o].
(b) D(C), the field of fractions of the ring of differential operators on a
curve C of positive genus.

It is interesting to note that Schelter’s 3-dimensional Sklyanin algebras
provide the only division rings on our list which are relatively new. In fact,
Van den Bergh showed recently that S(E,o) is the ring of invariants in
K(E, o) under the involution defined by the map which sends p — —p in
the group E, and ¢ ~ ¢!, Thus the Sklyanin division rings are also closely
related to more classical ones.

There are several definitions of dimension for division rings. The first
one, the GK transcendence degree, was introduced by Gelfand and Kirillov
[GK,Z1]. They used this notion to distinguish the fields of fractions of
the Weyl algebras A,. One can also define the dimension of D to be its
projective dimension as a module over D® D°PP [Re,Ro,St]. Recently Zhang
[22] found an elegant definition (ZD) for which it is easier to prove some
general properties: Let D be a division ring over a field k. Then zd(D) > r
if there exists a finite dimensional k-subspace V of D containing 1 and a
constant ¢ such that for every finite dimensional subspace W of D,

dim(VW) > dim(W) + cdim(W)"F.

As Zhang points out, the way to understand this definition intuitively is
to imagine dim(W) as the volume of a variable region in an r-dimensional
space. Then with an appropriate constant factor, dirn(W)r‘E‘l is a lower
bound for the volume of the boundary OW. The regions VW and W differ
only near the boundary.

Zhang has shown that zd(D) is at most equal to the GK transcendence
degree. It is not known whether or not the two are always equal. We will
call a Z2 division ring one which is finitely generated over k& and such that
zd(D) is equal to 2.

Conjecture 5.2. The list 5.1 contains all Z2 division rings.

Zhang has shown that the division rings listed are distinct, and that certain
inclusions among them can not occur. For example, kq(z,y) is not a subfield
of D;. (Some of these facts were known before.) A convenient tool for
verifying them is the concept of prime divisor. A prime divisor of a Z2-
division ring D is a discrete valuation ring R whose residue field is a function
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field in one variable over k. The components of the point locus ¥ of X =
Proj A (see 3.1) define valuations of its function field, the ones classically
referred to as being “of the first kind” on X.

Proposition 5.3. Let D be one of the division rings 5.1, and suppose that
D is not finite over its center. Then D has at least one prime divisor. More
precisely,

(i) The prime divisors of kq(x,y) are determined by the values v(z),v(y),
which can be any pair of relatively prime integers. The residue field
of every prime divisor is a rational function field.

(ii) The Sklyanin division ring S(E, o) has exactly one prime divisor. Its
residue field is the function field k(E) of the elliptic curve.

(iii) The residue field of every prime divisor of D) is a rational function
field.

(iv) The division ring K(E, o) has exactly two prime divisors. Both have
the function field k(E) as residue field.

(v) There is exactly one prime divisor of D(C) whose residue field is the
function field k(C). All other prime divisors have rational residue

fields.

A prime divisor R comes equipped with an outer automorphism, which is
defined by conjugating by a generator of its maximal ideal M, and which
provides further information about the division ring. It also has an indexz,
the largest integer n such that R/M™ is commutative.

Assertion 5.3(i) is due to Zhang, and Willaert [W] has studied prime
divisors in Dy. A proof of 5.3(ii) is outlined in Section 6. We don’t know
how to prove the existence of a prime divisor directly from the Z2 condition,
and indeed, even if one always exists, it may be difficult to give a direct proof
because the assertion is false when the assumption that D is not finite over
its center is removed. A proof of the existence might be a starting point for
classifying the Z2 division rings.

Some heuristic evidence for the conjecture that a Z2 division ring has a
prime divisor is provided by the following construction, which will produce
one in a few cases: Choose generators for a convenient finitely generated
subring S of D, and form a graded ring A by homogenizing the defining
relations, using a central variable z of degree 1. If we are very lucky, A
will be noetherian and of GK-dimension 3, and z will generate a completely
prime ideal P. Then Theorem 1.2 identifies A/ P as a twisted homogeneous
coordinate ring of a curve. In that case P will be localizable, and the graded
localization Ap will be a graded valuation ring, whose subring of degree zero
is the required prime divisor.

The set Py of prime divisors of the Weyl skew field D, forms a fairly
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complicated picture, but one can give a combinatorial description in terms
of the birational geometry of the ordinary projective plane P? (see also
[W]). Consider prime divisors of the rational function field k(z, y) which are
centered on the line L at infinity in P?. Define the index of such a prime
divisor to be the order of pole of the double differential dx dy, and let P,
denote the set of prime divisors in k(z,y) of positive index.

Proposition 5.4. There is a bijective map P, — P, which preserves index.

A similar description can be given for the prime divisors of D(C). This
proposition was proved in joint work with Stafford. It is not very difficult,
but is too long to include here.

6. Evidence.

Besides the examples, Conjecture 4.1 is based on evidence collected by
three methods:

6.1.
(1) quantization, or deformation of commutative schemes,
(2) the theory of orders and the Brauer group, and
(3) Van den Bergh’s notion of noncommutative blowing up.

We have no additional evidence on which the rash Conjecture 5.2 that our
list of Z2 fields is complete can be based. It is just that no other division
rings have appeared up to now.

Discussion of the evidence.

(1) It is reasonable to suppose that a sizable family of noncommutative
surfaces would leave a trace as a “classical limit”, a commutative scheme.
If the conjecture is correct, then the limit surface must be rational or ruled.
We may test this conclusion by studying infinitesimal deformations of a
commutative surface. As is well known, the main invariant of a first order
deformation of a commutative surface Xj is its Poisson bracket, which is a
section of the anticanonical bundle A?Tx, = Ox,(—K). On many surfaces,
this bundle has no sections. The first assertion of the following proposi-
tion follows directly from the classification of commutative surfaces (see
[Be,BPV]). A proof of the second assertion is outlined in Section 8.

Proposition 6.2. Let X, be a smooth projective surface which admits a
noncommutative infinitesimal deformation X. Then
(i) Xo has an effective anticanonical divisor, and is one of the following:
a rational surface, a birationally ruled surface, an abelian surface, or
a K3 surface.
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(ii) If there exists an ample invertible sheaf on Xo which extends to an
invertible bimodule on X, then X is rational or birationally ruled.

The existence of an ample invertible bimodule is necessary in order for the
polarization of Xo to extend to the deformation, i.e., for the homogeneous
coordinate ring to deform compatibly (see 8.2 for a precise statement). Thus
the classical limit surfaces are of the expected types.

As is well known, the anticanonical divisors on a surface have arithmetic
genus 1. Those on ruled surfaces are described by the next proposition.

Proposition 6.3. Let Z be an effective anticanonical divisor on a ruled
surface X over a curve C of genus g.
(i) Ifg > 1, Z = 2D + F, where D is a section and F = Y F; is a sum of
rulings.
(ii) If g = 1, then either Z has the above form, or else Z is the sum of two
disjoint sections.

Examples 2.3 and 2.4 are deformations of commutative surfaces determined
by Poisson brackets of the forms (ii) and (i) respectively.

(2) Studying orders can provide heuristic evidence for the conjecture that
various g-rational surfaces which arise, for example by quantization, should
be birationally equivalent. To obtained this evidence, we specialize ¢ to a
root of unity or o to a translation of finite order. Then, in all cases which
have been investigated, the algebra A becomes finite over its center, and one
can test birational equivalence using known results about the Brauer group.
The description of deformations of orders is still being worked out, but
Ingalls has shown that if a maximal order whose center is a smooth surface
Z admits a non-PI deformation, then the anticanonical sheaf Oz(—K) must
have a nonzero section which vanishes on the ramification locus of the order.
So the center Z of X = Proj A is one of the surfaces listed in 6.2(i). For
instance, Z may be a rational surface with effective anti-canonical divisor,
and the anticanonical divisor may be an elliptic curve. The next proposition
is rather easy to prove:

Proposition 6.4. A smooth elliptic curve E has an essentially unique em-
bedding as a cubic curve in P2. Suppose that E is also embedded as an
anticanonical divisor E, into a rational surface X,. Then the pair E, C X,
" is birationally equivalent to the embedding E; C X3 of E as a plane cubic
in X3 = P2 In other words, the local rings of X; at the general points of
E; are isomorphic.

A similar result holds when the anticanonical divisor E is a cycle of rational
curves [Lo]. Now if E is an elliptic curve on a rational surface X and if E'/E
is an etale covering of elliptic curves, then Brauer group computations [AM]



12 ARTIN: Problems on three-dimensional graded domains

show that there is a division ring D with center the rational function field
k(X), whose branching data is this given covering, and that D is unique
up to k(X )-isomorphism. The proposition shows that, provided that E is
anticanonical, D is isomorphic to the division ring obtained from the cubic
embedding E C P2. This is what the conjecture would predict for the
Sklyanin division ring, if o were allowed to have finite order.

(3) Having plausibility arguments for the existence of birational maps be-
tween certain of the projective schemes, a natural question is: What are
these birational maps? In the commutative case, a theorem of Zariski as-
serts that one can factor any birational transformation between smooth
surfaces into a succession of blowings up and down. The key ingredient
which has been provided by Van den Bergh [VdB2] is to describe the non-
commutative analogue of the blowing up of a surface. He has shown that in
favorable cases one can blow up a point p of the point locus of X, obtaining
another projective scheme X'’ in which the point p is replaced by an excep-
tional module. He has also shown how the blowing up process produces the
mysterious sporadic fat points which appear on special quantum quadrics

(see [S],[SSts]).

Because blowing up is an essentially projective construction, the defini-
tion is subtle and the blowing up does not lead to a projective scheme in
all cases. We refer to Van den Bergh's paper for the definitions. For the
purposes of this paper, it seems sufficient to illustrate the process by an
example. This is done in Section 9.

7. Prime Divisors of the Sklyanin Division Ring:

This section gives a proof of Proposition 5.3 (ii). We refer to the literature
for known results about the 3-dimensional Sklyanin algebra A(E, ). Recall
that o is assumed of infinite order. Let A denote the 3-Veronese of A(E, o).
There is a central element g of A(E, o) of degree 3 [ATV], and it has degree
lin A. Let Q = D[z,27';7] denote the graded fraction field of 4. One can
take for z any element of A; (or of @, for that matter). A change of the
element 2z € @ changes 7 by an inner automorphism. Since ¢ is central,
7 =1 when z = g. Thus 7 is inner for all choices of z.

Let R be a prime divisor of D, a discrete valuation whose residue field
K = R/M is a function field in one variable, and let v denote the associated
valuation. A discrete valuation is stable under inner automorphism. Thus
R is 7-stable, and R[z,z7!;7] is defined and is a subring of Q.

Lemma 7.1. We may choose z € Ay so that Ay C Rz. When this is done,
A CR[z;7).
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Proof. With g as above, we choose u € A;g~! with v(u) minimal. Then
A1g7'u"! C R. So z = ug has the required property.

We denote the automorphism of the residue field K of R which is induced
by the action of 7 on R by 7 too, so that K[z,27 ;7] = R[z,z7 ;7| ®r K.
Let A denote the image of A in K[z,2z7};7), and let = be the canonical
homomorphism A - A. Thus 4 is a graded domain.

Lemma 7.2. A= A/gA.

Proof. We use the fact that the Sklyanin algebra has no two-sided graded
ideal T such that gk(4/T) = 1. Since K[z,271;7] is a domain of GK-
dimension 2, gk(4) < 2. It is at least 1 because z € A;, and it can’t be 1.
So gk(4) = 2, and A is the coordinate ring of a twisted curve, one of the
rings described in Theorem 1.2. We also know that A has no graded ideal I
such that gk(A4/I) = 1, because A has none. Therefore every nonzero ideal
of A is cofinite. Let g be the residue in A of the central element g. If §
were not 0, A/gA would have GK-dimension equal to gk(4) — 1 = 1. Since
this is impossible, § = 0 and ¢ is in the kernel of 7. Since g generates a
completely prime ideal in A and gk(A/gA) =2, A = A/gA.

The set S of homogeneous elements of A which are not divisible by ¢
is an Ore set, and the degree zero part of the ring of fractions S~'A4 is
the valuation ring of the g-adic valuation which, on A, is given by the rule
v(a) =rif a = g"b and g does not divide b. By what has been proved above,
S~'A C R[z,z7';7], because the image of s € S in the graded division ring
K[z,27';7] is not zero. Since (S~!A)o is a valuation ring, this ring must
be R.

8. Deformation of a Commutative Surface.

In order to keep the discussion brief, we restrict our attention to first
order deformations, those parametrized by the ring R = k[e], €2 = 0. We
denote by Ag the category of R-algebras A such that AQ gk is commutative.

Let us call a scheme Xgr in Ap a commutative scheme Xy, together
with an extension of its structure sheaf Ox, to a sheaf of rings Ox in ARg,
compatibly with localization. The sheaf Ox will be called the structure
sheaf of X. By coherent sheaf on an R-scheme Xpg, we mean a sheaf of
finite right O x-modules which is compatible with localization. The scheme
X is smooth if Ox is flat over R and if X is smooth. We write O = Oy,
Oo = Ox,, and we denote the tangent sheaf on Xy by Tp.

Because Xp is commutative, the commutator [z,y] on O can be viewed
as a skew symmetric map « : Op X Oy — Op which is a derivation in each
variable. We call such a skew derivation a bracket. The next proposition is
standard.
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Proposition 8.1.

(i) Let Xo be a smooth scheme over k. The set of brackets on Xy is
classified by H°(Xo,A*To).

(i1) If a bracket o is given, then a smooth extension of Xq to R with
commutator a exists locally. The obstruction to its existence globally
lies in H*(Xo,To). If the obstruction vanishes, then the isomorphism
classes of of extensions X whose commutators are the given bracket
form a principal homogeneous space under H'(X,,Tp).

(iii) For any smooth extension X, the sheaf Aut(O) of local automorphisms
of X which reduce to the identity on Xo is isomorphic to Tp.

The first assertion of Proposition 6.2 follows from (ii) and the classification
of surfaces [Be,BPV].

Suppose that a smooth extension X is given, and that Xy is projective,
with ample line bundle Lo. We consider the problem of extending this
polarization to X, so as to obtain a noncommutative projective scheme in
the sense of [AZ]. What we want is an R-linear, ample autoequivalence
s of the category mod-X of coherent sheaves over X which extends the
polarization sp = - Qe, Lo of Xp defined by Lg. We call an (O, O)-bimodule
L invertible if R acts centrally on L, L is locally isomorphic to O as left and
as right module, and Lo = L Qg k is a central Og-bimodule.

Proposition 8.2. Let X be a scheme in Ag, and let Ly be an invertible
sheaf on Xy. Let s be an autoequivalence of mod-X which extends the
autoequivalence so of mod-Xg defined by L.
(i) There is an invertible O-bimodule L such that s 2 -®oL and LOgk ~
Lo. If s¢ is ample, then so is s.
(ii) With L as above, set A = @ H°(X,L®") and A° = @ H(Xo,Ld™).
Then A is a noetherian graded R-algebra, As,o is R-flat, and As,0Qk ~
A,

We analyze the problem of extending Op-bimodule Lg to O in two steps.
First, we extend the right module structure. Right O-modules locally iso-
morphic to O are classified by H!(X,0*), and there is an exact sequence

0 0f X5 0" 505 >0.

Thus, as in the commutative case, the obstruction to extending the right
module Lo lies in H2(X,0y), and if it is zero, then the group H!(X,Op)
operates transitively on the set of classes of extensions. This is a standard
situation.

Next, we consider the left module structure of an invertible right module
Lo. The commutant £ = EndLg¢ is locally isomorphic to O. More precisely,
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if A € H'(X, O*) is the class representing Lo, then £ is the associated “inner
form” of O, defined by conjugation by A. It is not hard to see that if Ly has
the structure of an invertible bimodule which is compatible with the central
bimodule structure on Lg, then the commutant £ must be isomorphic to
O by an isomorphism which reduces to the canonical isomorphism & =
Oy, and this means that the image of A in H'(X,AutO) = H'(Xo,To)
must be the trivial class. This is difficult to achieve when the sheaf O is
noncommutative.

Let the class associated to A in H!(X,Aut O) be denoted by cy. To
analyze this image, we suppose that the ground field & is the field C of
complex numbers. Then we may pass to the category of analytic sheaves,
and we do so, retaining the same notation. When written in terms of a global
section a of A%2T, the commutation law in O becomes the following: Let u, v
be the residues in O of elements u,v; € O. Then [u;,v;] = (a,du A dv)e,
where (-, - ) denotes the pairing A2Tp x Q3 — Op. The section a also defines
amap & : 2§ = QY =T, by

(8.3) a(n) ={a,nA -).

Direct computation shows that there is a row-exact diagram of analytic
sheaves

0 » C* y O 2og, g1 4, 02 — 0
T
0 , C* ' O) —— Ty » Out(0; Op) —— 0

where the top line is the logarithmic de Rham complex, and Qut(O, Op)
denotes the sheaf of outer automorphisms which reduce to the identity on
Q. This diagram allows us to interpret the obstruction ¢y in terms of the
pairing A2Ty x Q3 — Tp defined by 8.3. We have

(8.5) cx = adloghg = a Udloghp.
Note also that the map H'(dlog) factors through the Chern class map:
HY(Xo,0*) = H%(X,,C) = H(Xo,0).
The image of the Chern class map is contained in H!!, which implies that
the second of these maps is injective on the image. Hence dlog()g) is not

zero unless its Chern class vanishes, which is not the case if \g is the class
of an ample invertible sheaf.
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Proof of Proposition 6.2(11). Because of Proposition 6.2(i), we need only
rule out the possibility that X is a minimal model of a K3 surface or an
abelian surface. In these cases, A2Ty = Op. The nonzero global section a €
H°(Xo, A*Tp) is unique up to scalar factor, and is nowhere zero. Therefore
the map & is bijective, and the rows of 8.4 are isomorphic. If Ay is the class
of an ample invertible sheaf Ly, then dlog{Ao) # 0, hence ¢y # 0.

Note that the tensor product of two invertible bimodules on X is also
invertible, as is the dual module LY = Hom(L,O). Hence the subset of
Pic Xy which consists of the classes of invertible sheaves on Xy which admit
an invertible extension to X is a subgroup.

Proposition 8.6. Suppose that X € Ag is smooth, of dimension d. Then
the class of the canonical sheaf ¢ extends to an invertible bimodule on X .

A del Pezzo surface is a surface Xp on which A2T, is ample.

Proposition 8.7. A del Pezzo surface Xo admits an extension to R which
is not commutative, and every such extension has an ample invertible bi-
module.

Proof. Such a surface is rational, and Riemann-Roch computations show
that H?*(Xo,To) = 0, HY(Xo,A?To) = 0 if ¢ # 0, while H°(Xo,A?T) # 0.
Thus the obstructions 8.1 to extending a bracket o and a ring O to R vanish.

9. An example of noncommutative blowing up.

We have chosen an example in which we blow up a point of an affine
surface X = Spec R. The blown up surface will have the form X’ = Proj B,
where B is a graded R-algebra. We take R = k(z,y), with commutation
relation yz = (z + 1)y. The point to be blown up is the one defined by the
two-sided ideal m = (y,z)R. Note that the Rees ring ROmadm?> @ -,
which defines the blowing up in the commutative case, will not work here
because, as is easily seen, y € m" for all n. Van den Bergh proceeds by
twisting this construction.

Let o denote the automorphism of R of conjugation by y~!, ie., y° =

y, and 27 = = — 1. Let R(#;0) denote the skew polynomial ring with
commutation relation tr = r?¢, and extend o to R(t;o) by setting ¢t = t.
Let m; denote the two-sided ideal (y,x — ¢)R. Then tm; = m;41t and
mg' = Mi+1.

The blowing up of X = SpecR is X' = ProjB, with B = R(v,w) C
R(t;o) , where v = tr and w = ty. Then

(91) B = REBmltEBmlmgtz@m1m2m3t3€9---



ARTIN: Problems on three-dimensional graded domains 17
The set

(92) (e -y (@~ D(E -2y (@ = 1) (2 = n))

generates m; - - - My, and its residues form a basis of (m; - - - m,)/(mg - - - m,).
The element w is central in B.

The role of the exceptional curve, the inverse image of the point in the
commutative case, is played here by the “exceptional” right module Ep =
B/mpB. One obtains a basis of E, by multiplying the residues of (9.2)
by t*. So the Hilbert function of E is dimyE, = n + 1. The exceptional
module E has a unique point module P = E/wE as quotient. The residue
of the element (z — 1)-.-(z —n) is a basis of P,.

The scheme X' has one affine open set, namely Spec R/, where R' =
Blw™1o. Setting z = w™'v = y~ 'z, one finds R’ = k{y, z)/(zy = yz - 1):
the Weyl algebra. The restriction of the exceptional module to this affine
is the module R'/yR’, which is the standard simple module over R'.
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The mathematical influence
of Maurice Auslander in Mexico.
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The first visit of Maurice Auslander to Mexico was in the summer of 1975.
He lectured on several subjects in the representation theory of algebras. We
were impressed mainly by the part of the lectures related to almost split
sequences, then recently discovered by M. Auslander and I. Reiten.

At that time we were interested in the Coxeter and reflection functors
introduced by Bernstein-Gelfand-Ponomarev [10].

Apparently there were some connections between Coxeter functors and
Dtr. Later on [11] these connections were in fact established.

During 1976 — 1977 Roberto Matinez and the author spent two years at
Brandeis University. There, we had the opportunity of knowing, and living
in, an exciting atmosphere. We met many people through Maurice who were
interested in the representation theory of algebras.

In the following we recall some of the mathematical results in represen-
tation theory obtained in Mexico due to the influence of Maurice Auslander.

1. Almost split sequences and irreducible maps.

Take A an artin algebra, denote by modA the full subcategory of the
category of left A—modules whose objects are finitely generated modules.

We recall the definition of almost split sequence.
1.1 Definition: An exact sequence in modA:
1 0—A--B-1Cc—0

is said to be almost split sequence if:
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1) the sequence does not split,

ii) A and C are indecomposables,

iil) if f : X — C is nonsplittable mono, there is some g : X — B such
that j¢9 = f.

1.2 Theorem (Auslander-Reiten)[2]): For any nonprojective indecom-
posable module C' in modA there is an almost split sequence (1). For any
noninjective indecomposable module A in modA there is an almost split se-
quence (1). Moreover there are dualities D : modA — modA? and tr :
modA — modA° (modA has the same objects as modA and the morphisms
are module those factorizing by projectives) such that in (1) A = DirC and
C=wrDA.

A concept related with almost split sequences is the concept of irreducible
map.

1.3 Definition: If X and Y are objects in modA, amap f: X — Y is
called irreducible if:

a) f is neither epi splittable nor mono splittable,

b) if f = vu where u: X — Z and v : Z — Y then either u is mono
splittable or v is epi splittable.

On can see easily that any irreducible map is either mono or epi. On the
other hand in (1) ¢ and j are irreducible maps. Moreover if g : X — C is an
irreducible map, this map is a direct summand of j. Duallyif h: A — Y is
an irreducible map then h is a direct summand of 7.

If in (1) we decompose B as a sum of indecomposable modules, B =
;=1 n: E: with E; 2 E;, we obtain the invariants n;, 7, 3_n;. The simplest
question one can ask is the following: for which kind of algebras is there some
almost split sequence (1) with B indecomposable?.

M. Auslander and 1. Reiten proved that if A is of finite representation
type, then there is always some almost split sequence with indecomposable
middle term [3]; Roberto Martinez proved that this is so for any artin algebra,
[17].

In [5] we obtained an interpretation of the numbers n; in terms of the
radical of a category.

We recall that

rad(X,Y) = {f € Hom(X,Y) |1 - gf is invertible Vg € Hom(Y, X)}
= {f € Hom(X,Y)|1— fhis invertible Vh € Hom(X,Y)}

Then '
dimpnd(,)/rad End(E;) Tad/rad*(E;, C)
= dimpnd(E,)frad End(E:) Tad[rad*(A, E;)

ni
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In the Maurice’s lectures in Mexico of 1975 he gave the following intringuing
result.

1.4 Proposition: Let 0 — A 4B 24 C —0beanon split exact
sequence in an arbitrary abelian category C. Then:

a) f: A — B is irreducible if and only if g : B — C has the property that
given any morphism h : X — C there is either a morphism t : X — B such
that gt = h or a morphism s : B — X such that hs = g,

b) g : B — C is irreducible if and only if the morphism f : A — B has the
property that given any morphism h: A — Y there is a morphismt: B — Y
such that tf = h or a morphism s: Y — B such that sh = f.

Using this proposition and the above description of the numbers n; one
can obtain some restriction for the numbers n; in the case when A is of
strongly bounded representation type. We recall the definition: A is of
strongly bounded representation type if for any given number n there is
only a finite number of indecomposable modules having composition series
over the center of A of length n.

1.5 Proposition: Suppose A is an infinite algebra of strongly bounded
representation type, then:

i) if f: X = Y is an irreducible map, then either X orY is indecompos-
able,

i) if B = [In;E; is the middle term of an almost split sequence with
E; # E; then n; < 3,

iii) in the above if for some i, n; > 2 thennj =1 fori # j,

iv) if A is a finite dimensional algebra over an algebraically closed field
then n; = 1 for all <.

Later on this result was improved for the case of finite representation
type.

1.6 Theorem (Bautista-Brenner) [6]: If A is of finite representation
type then Y- n; < 4, if the equality holds one of the modules E; is projective
injective.

2. Powers of Dir.

One of the results from the lectures of Maurice Auslander in Mexico which
deeply impressed us was one obtained by Maurice and the then student at
Brandeis, Maria Inés Platzeck.

2.1 Theorem (Auslander-Platzeck) [1]: Take an artin hereditary
algebra A, then A is of finite representation type if and only if for all inde-
composable module M there is some n such that Dir® M = projective.

In fact this result was previously proved by Dlab-Ringel [13] using the
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methods developped by Bernstein-Gelfand-Poromarev in [10]. However the
importance of the Auslander-Platzeck result lies in the method of proof,
which allowed the study of more general cases.

In Brandeis Maria Inés, Roberto and the author had many and fruitful
discussions (in spanish) on these and related topics. Maurice was always
very interested in the outcome of such discussions. One of the main prop-
erties of hereditary algebras used for proving 2.1 was the fact that maps
between indecomposable projective modules are always monomorphisms. So
if we consider artin algebras with this property we get a generalization of
hereditary algebras: locally hereditary algebras.

2.2 Definition: An artin algebra is called locally hereditary algebra if
any local submodule of a projective is projective. Here a local module is one
with only one maximal submodule.

2.3 Theorem [6]: Take A a locally hereditary algebra then A is of finite
representation type if and only if for any indecomposable module M in modA
there is some n with Dir® M = projective.

This kind of algebra includes the algebras of finite representation type
considered and classified by M. Loupias [16].

Back in Mexico, Roberto Martinez and the author became interested in
the work of the Kiev school of representation theory.

Nazarova and Roiter introduced the concept of representations of a poset.
Later on P. Gabriel [14] gave a new definition which we use here.

Let S be a finite partially ordered set and & a field.

2.4 Definition: A representation of S over k is given by a k-vector space
V and a function ¢ : S — k—vector subspaces of V such that if s; < s,
e(s1) C @(s2). If (V,¢) and (W, ) are representations of S, a map p :
(V,¢) — (W, ) is given by a linear map p: V — W such that pp(z) C ¥(7)
for all 7 € S. We denote by Rep(S, k) the category of representations of S
over k.

The category Rep(S,k) has direct sums. The Krull-Schmidt theorem
holds true in Rep(S,k). We will say that S is of finite representation type
over k if Rep(S, k) has only a finite number of isomorphism classes of inde-
composable objects.

We will say that the sequence

is an exact sequence in Rep(S, k) if 0 — V; 25 V, 24 Vo — 0 is exact
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and for all s € S the sequence
0 — w1(s) = a(s) T ps(s) — 0
are exact.

We have in Rep(S, k) a definition of almost split sequences similar to
the one in algebras. Moreover if (1) is an almost split sequence there is
an operator similar to Dtr, F such that (Vi,¢;) = F(V3,¢3). We have the
following:

2.5 Proposition (Bautista-Martinez)[9): Rep(S,k) has almost split
sequences. Moreover S is of finite representation type if and only if for any in-
decomposable object M € Rep(S, k) there is some n with F* M = projective
object in Rep(S, k).

For the proof we construct A(S) a 1—Gorenstein locally hereditary alge-
bra such that Rep(S,k) = tsA(S)a, = full subcategory of modA(S) with as
objects the submodules of projectives which do not contain A(S) as a direct
summand. Following some suggestions of Maurice, we proved that tsA(S)a,
has almost split sequences.

3. Almost split sequences in subcategories.

In the summer of 1978 Maurice made his second visit to Mexico. He was
very interested in the results surounding prop 2.5. We had several discussions
on this point. Qur main interest was in the possibility of using the machinary
of almost split sequences for the theory of representations of partially ordered
sets. Maurice’s point of view was more general, to see under what conditions
a full subcategory of modA has almost split sequences. During his stay in
Mexico he presented us with his joint work with S. Smalo on preprojective
partitions. Later on they produced their nice work on almost split sequences
in subcategories of modA.

3.1 Definition: Let C be a subcategory of modA. Then a morphism
g : B — C in C is said to be right almost split morphism in C if:

1) ¢ is not a splittable epimorphism,

i) if b : C'" — C is a non splittable epimorphism, then thereis A’ : ' — B
with h = gh'.

We have the dual definition for ¢ : C — B left almost split morphism in
C.

An object C in C is called Ext—projective in C if there are not non trivial
short exact sequence in C ending in C':

0—D—FE—C—0
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A similar definition for Ext—injectives.

Then we say that C has almost split sequences if:

i) has right and left almost split maps,

ii) for any C in C no Ext—projective, there is an almost split sequence
0—C —F—(C—0,

iii) for any C in € no Ext—injective there exists an almost split sequence
0—C—F—(C'—0.

We have the following theorem.

3.2 Theorem (Auslander-Smalo) [4]: If C is closed under extensions
and functorially finite, then C has almost split sequences.

We recall that C is called covariantly finite if for any X in modA there
exists W in € and an epi

1 : Hom(W,-) |c— Hom(X,~) |c— 0

The category C is called contravariantly finite if for any X in modA there
exist Z in C and an epi

p:Hom(—,2) |c— Hom(—,X) |c— 0

Finally C is called functorially finite if is both contravariant and covariantly
finite.

With this result in mind, M. Kleiner and the author became interested in
the existence of almost split sequences for the representation of bocses. So
we joined forces and we proved this existence in 1988.

We recall that a bocs is a coalgebra A = (C,pu,€) over an algebra A
(algebra over an algebraically closed field k). Here u: C' — C ®4 C is the
comultiplication and € : C — A the counit, with the usual properties and
some further restrictions.

The category R of representations of A has as objects the left A—modules
and maps R(M,N) = Hom4(C ®, M, N).

HCoOM - Nandh:CQN L L are maps in R its composition is
given by
coM ¥ cocoM Y coN LI

Many classification problems in representation theory can be interpreted as
problems in the classification of representations of bocses. For instance,
representations of algebras, representations of posets, representations of bi-
modules. The theory of bocses was introduced by Roiter; this theory has
some important applications.
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In our situation C is finitely generated projective as a right and as a left
module. We can take B, = Hom4(Cy4,A4), this is an algebra over A, and
we have an inclusion A — B,.

Let us now consider p(B,, A) the full subcategory of modB, with as ob-
jects the modules B,®X. Then, if r denotes the full subcategory of R consist-
ing of those modules having finite dimension over k, r 22 p(B,, A) C mod(B,).

Using a generalization of 3.2 one has the following result.

3.3 Theorem [8]: The subcategory p(B,, A) has almost split sequences.

The above result was proved by different methods by W.L. Burt and M.C.
Butler [12] using 3.2. directly.

4. Stable equivalence.

As we mentioned before, tr is a duality between the categories modA
and modA°? where modA is defined as follows: objects of modA = objects
of modA. Now if M and N are in modA we denote by P(M, N) the set of
morphisms which can be factorized through projectives. Then

Hom,(M,N) = Homy(M,N)/P(M,N)

4.1 Definition: The algebras A; and A; are said to be stably equivalent
if modA; = modA,.

The above defintion arises naturally in the theory of finite groups. One
can ask what properties do two stably equivalent algebras have in common.
In this direction we have the following conjecture.

4.2 Conjecture (Auslander-Reiten): If Ay and A, are stably equiva-
lent then Ay and Ay have the same number of simples non projectives.

This problem has attracted the attention of R. Martinez. He had many
discussions with Maurice on this subject.

One of his first results was the characterization of algebras which are

stably equivalent to I—hereditary algebras, generalizing previous results of
M. Platzeck [20).

The ideas of this work were the basis for his work [18] in which each
algebra A has an associated selfinjective algebra T(A).

4.3 Theorem: With the above notation Ay and A, are stably equivalent
if and only if £(A;) and E(A;) are stably equivalent.

Using 4.3 the Auslander-Reiten conjecture is reduced to the case of self-
injective algebras.
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The conjecture 4.2 was solved in 1985.

4.4 Theorem: If A; and Ay are stably equivalent and of finite represen-
tation type then they have the same number of non projective simples.

5. The influence of M. Auslander in the development
of representation theory in Mexico.

After Maurice’s second visit to Mexico, he visited our country on many
more occasions. For instance he gave a lecture in Mazatlan during the meet-
ing of the Mexican Mathematical Society. Later on he participated in the two
meetings of the Latinoamerican School of Mathematics which were held in
Mexico. He participated in the two international congress of representation
theory organized in Mexico, the first in 1980 and the second in 1994.

Although we had different points of view, Maurice’s influence was very
important in the development of our group. This influence was not only
through the suggestion of specific mathematical problems but through more
general ideas of how to look at mathematics.

The ideas developed by R. Martinez and the author under the influence
of Maurice were an important source of inspiration for the further work of
Francisco Larrién and Leonardo Salmerén on simply connected algebras [15]
and the work of R. Martinez and José Antonio de la Pefia on coverings [19].
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INTERTWINED W ITH MAURICE

by David A. Buchsbaum

What I would eventually like to do in this talk is describe some recent, if
fragmentary, results on intertwining numbers. But given this rather special occasion, I
thought I'd indulge in a bit of reminiscence and at the same time trace some of the twine
that connects my present work with the spirit of the work that Maurice and I did so many
years ago.

There are many bonds that interlace all of us here today. Of course you know
that Maurice spent a good part of his middle and late life on representation theory of
Artin algebras, but you may not realize that Emil Artin played a fundamental role in
the very early mathematical lives of Maurice and me. When Maurice and I finished our
theses at Columbia in 1953, Maurice went to Chicago and I went to Princeton. At that
point, Maurice was still very much interested in group cohomology (he hated
categories!), and I was puzzling over the implications of homological algebra to
commutative ring theory, a puzzlement brought on by the Cartan-Eilenberg proof of
the Hilbert Syzygy Theorem.

Although I had been invited to Princeton largely through the efforts of
Steenrod, Emil Artin was kind enough to take a very young and ignorant new
instructor seriously. I can’t remember when in the 1953-54 academic year the topic
came up, but it was in conversations with Artin that I first became aware of the open
question: If R is regular, and P a prime ideal, is Rp regular? At that time, it was
already clear that the global dimension of a regular local ring was finite; so to a naive
optimist, thoroughly saturated with the latest in homological algebra, it was trivial to
observe that if finite global dimension were characteristic of regular local rings, then
simple localization arguments would guarantee a positive answer to that question.
With some suggestions from Artin about sources that would help me to see the
relationship between what I knew and what I wanted to know (e.g. Macaulay, Grébner
and I.S. Cohen), I got busy reading about the Hauptidealklasse, structure theorems,
etc. With help and encouragement from E. Snapper (whom Artin had invited to
Princeton to teach algebraic geometry while he was on leave), I succeeded in showing
that the local rings of the cusp, the ordinary double point, and (to have integral
closure and singularity simultaneously) the quadratic cone, all had infinite global
dimension. (I say "with help from Snapper”. You have to realize that at that point in
my education, I barely knew what the equations for those varieties were!l) Armed with
this, and a "homologized” proof of the theorem in Grébner that hdg(R/(Ix) = 1+
hdgr(R/I) if x is not a zero divisor for R/I (I had essentially used a mapping cone
argument--clearly a favorite sport of mine), I had a long conversation with Maurice (on
the train to an AMS meeting at Rochester, NY) about undertaking the program to
characterize regular local rings as those having finite global dimension. Needless to
say, Maurice didn’t get too enthusiastic until he had taken my puny effort in relation
to R/(Ix) and generalized it to the form we all know today about hdpM/xM = 1+
hdgpM if x is regular on M. (You all know that he was never one to hop onto a
bandwagon; if the mathematics didn’t speak to him, he’d have little or nothing to do
with it. Fortunately he had already turned his interest to general homological algebra;
his theorem that the global dimension of any ring is bounded by the projective
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dimensions of its cyclic modules was already in rough draft.) The important thing is
that Maurice not only generalized the result, but used more elegant methods to prove
it (methods that we now regard as purely elementary, but were still novel then). At
that point he too became convinced that Ext and Tor had a real place in commutative
algebra, and our collaboration began. (I should add here that it was Snapper who,
after seeing that Maurice and I had been able to make progress on the ”localization
problem”, mentioned to me that the problem of factoriality in regular local rings was
still unsolved. As in the localization case, the theorem was known for geometric local
rings, but not for unequal characteristic.)

There were very few times that Maurice and I actually got together physically to
do our work. We mostly corresponded (long-distance phone calls were used in those
days only to announce births and deaths), since neither of us could easily afford the
cost of travel (the NSF had barely started to operate; our collaboration began in pre-
Sputnik days). It was during one get-together that our theorem on the sum of the
codimension and projective dimension of a module equaling the codimension of the
ring was generated. The dynamic was typical of most of our work together: naive
optimism confronted by deep scepticism and a final resolution. We also got together
on our Codimension and Multiplicity paper; I visited with him for about a week. But
even there, since he was an early riser and I a late one, we only overlapped for a few
hours during the middle of the day and early evening, so our heated exchanges were of
relatively short duration. He would drift off to bed while I continued working into the
night, and I would leave him notes indicating where I had got to so that he could
resume work when he awoke early the next day. We did manage to get that paper
written, despite our spending so much time together on it!

You're all familiar with most of what we did together, so 'l just highlight a
few facts that had a strong effect on my mathematics during this period. I've indicated
that the Hauptidealklasse was a fundamental idea to which I was exposed early in my
education on local ring theory. This of course appealed to me because it was the basis
of the proof of the Syzygy Theorem which had intrigued me as a graduate student. I
was led, naturally, to a systematic study and use of the Koszul complex, and its
application to codimension and multiplicity (the connection with multiplicity was

inherent in the work of Grébner). The rigidity of the complex (which led to Maurice’s
Rigidity Conjecture--we were absolutely unable to solve the general rigidity problem
when the notion presented itself in our Codimension and Multiplicity paper) was
clearly a powerful tool, and was a condition I sought to satisfy when I embarked on the
program to generalize the Koszul construction.

The reasons for seeking such a generalization were varied. One obvious one was
the generalized Cohen-Macaulay Theorem: the Koszul complex had proven successful as
a way to prove the usual C-M theorem, and the generalized one, having to do with the
height of ideals generated by the minors of a matrix, was begging for a similar
approach. Then there was the fact that matrices and modules were pretty much the
same thing; I was always fascinated (and still am) by the fact that the presentation
matrix of a module presumably holds all the information about that module. If that is
the case, exploring the matrix systematically should give some additional techniques
for studying arbitrary modules of finite type. (Of course, since a matrix and its
transpose hold the same information, ... .) Then, too, singular loci are determinantal,
and I felt that the study of singularities would be enhanced by a good algebraic and
homological treatment of minors. In conversations with Don Spencer, it became clear
that overdetermined systems of PDEs might lend themselves to this sort of approach
and finally, I thought that multiplicity theory, defined a la the Koszul complex
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technique, could be generalized to a larger category (this did lead to what is now
known as the Buchsbaum-Rim multiplicity). I should add that I am a failed analyst
and geometer; I have always been fascinated by analytic (mostly PDE) questions, and
have frequently tried to do something with a geometric panache. As you know, I have
never even gotten close, but my intentions have been honorable. In any event, I
struggled for a long time with the problem of finding a generalized Koszul complex
(Eagon and Northcott got in early with their minimal resolution of the ideal of
maximal minors), did succeed in finding a family associated to the ideal of maximal
minors (this included a complex which could be used as a resolution of a torsion
module, i.e. the cokernel of the map associated to the matrix) and, with Rim, proceeded
to develop this more general tool. To keep Maurice in the picture I should say that
until I had proven that the complexes I had defined were "rigid”, I couldn’t be
satisfied that I had the proper generalization of the Koszul complex. (The rigidity of
these complexes implies an elementary but surprising fact about, even, the 2x2 minors
of a 3x2 matrix over a local ring; write it down and see for yourselves.)

Although Maurice and I had diverged, we thought that we might be able to
resume working together when I spoke to him about the lifting problem of
Grothendieck (our joint interest, of course, was its application to intersection
multiplicities). Maurice had some interesting obstruction cocycles at hand which I
thought we might apply by a successive approximation technique to the lifting
problem. Unfortunately, neither of us could make it work, and I, in the meantime, had
realized that determinantal techniques might be gainfully applied to this problem.
Maurice didn’t like determinants, so our renewed collaboration aborted soon after its
resumption. Let me review briefly why determinantal considerations enter the picture:

Suppose R = S/(x), where R and S are local rings, and x is a regular element of
S. Let M be a finitely generated R-module, and let

F: o F,o>F > >F,>3F->F,->M->0

be a free R-resolution of M. By choosing bases for the free modules of the resolution,
the maps may be described by matrices. Now let

F: s F —F_ —»-—>F—->F->F,

be a "lifting” of the complex F. By this I mean that the barred modules are free of the
same rank as the corresponding unbarred free modules, and the maps are matrices
whose entries in S are representatives of the entries in the corresponding matrices over

R
In short,

F/xF = F.
Since x is regular in S, we have the exact sequence:

@) 05 F—=F>F->0
which, if it were a sequence of complexes, would imply that the barred complex is
acyclic, and its 0-dimensional homology would be a lifting of M

Thus, the problem is to lift a free resolution to a free complex and, in the case
of a module, M, of projective dimension 0 or 1, this is clearly not a problem. The first



34 BUCHSBAUM: Intertwined with Maurice

case, then, is that of pdp(M) = 2, and I first considered cyclic modules M = R/I. For
this situation, I had to use a very special case of my family of complexes to show that I
is essentially ”determinantal”. (I spoke about this in Rome and Genoa, and, when I
returned home, showed the proof to Szpiro who, with Peskine, was visiting Maurice
that year at Brandeis. In Genoa, David Rees had told me that he’d had a student by
the name of Burch who had also recently, for very different reasons, proven much the
same theorem. Neither Szpiro nor I had previously been aware of such a result {in fact,
Peskine and Szpiro included a slightly improved version of my proof in a Comptes
Rendus note. They also later provided a counter-example to the general ”lifting
problem”]. This turned out to be the well-known Hilbert-Burch Theorem, the
connection with Hilbert having been discovered by Kaplansky, and Burch being the
graduate student of whom Rees had spoken. It also turned out that a number of people
had come up with the same result, and all for very different reasons.) The fact that
such an ideal is determinantal made it possible to lift its resolution "by the tail”, and
thus show that it itself is liftable.

With this type of result and envisioned potential application, I thought that it
should be possible to use determinantal information to analyze finite free resolutions.
Fortunately for me, David Eisenbud arrived on the scene at Brandeis, and our very
fruitful collaboration began. (I should admit that I had also become interested in D-
modules and their applications--further evidence of my desire to do something in
analysis--but Eisenbud’s enthusiasm for the program I mentioned, and his criticism of
my theretofore inelegant outline of it, seduced me from the unfamiliar back to familiar
ground.) It became clear pretty soon after we started to work that the results of
Maurice and Mark Bridger on Stable Module Theory had to be related to some of what
we were doing. Of course we asked Maurice if he had any clues and, after a little
thought, he characteristically said he didn’t think so. I say ”characteristically” because
what it really meant was that he was busy doing something else, and therefore had
forgotten the details of Stable Module Theory. (Maurice told me not too long ago that
it was Idun Reiten who said of him that the only mathematics he knew was the
mathematics that he had done himself and had not yet forgotten. This is probably
true to a greater or lesser extent of any of us, but with Maurice it was amusingly,
sometimes exasperatingly, extreme.) When Eisenbud and I did finally get our structure
theorems for finite free resolutions, Maurice agreed that there was, after all, a
connection. (For the issue of qumymms_ulge_hm that was dedicated to his
sixtieth birthday, I couldn’t resist submitting a little article that was connected with
these structure theorems and which related directly to part of the Auslander-Bridger
work.)

By the late 70s, it was clear that Maurice’s and my close collaboration was
definitely over, although we of course still had a great many exchanges. Maurice would
generally come into my office or stop me in the corridor and say that he wanted to
check to see if a certain result was well-known. This was his way of saying that he had
just come up with what he thought was a fascinating result, and he wanted to show it
to me. In a way, our roles from our graduate school days had become reversed: in the
old days, when I had been working on categories, he was the one who would ask for a
concrete application of anything I'd show him. Now, he would come up with some
categorical existence theorem, and it would be I who would ask what it looked like in
such and such a case. We had both moved off into representation theory, but in very
different ways. Most of you know only too well the directions he moved in. For the rest
of this talk, I'll try to indicate how, in disentwining from Maurice, I became entangled
with, among other things, intertwining numbers.
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The introduction by Lascoux of classical representation-theoretic techniques to
obtain resolutions of determinantal ideals was a tour-de-force. Since these classical
techniques required the assumption of caracteristic zero (meaning that the ground ring
contained the rationals), it was natural to ask whether the extension to arbitrary
characteristic was possible and, if so, whether one could reproduce these resolutions in
a characteristic-free way. The work of Carter and Lusztig ([C-L]) on representations
over fields of arbitrary characteristic was in the literature, and the later work of
Towber ([T]) was also available. In each case there were deficiencies from the point of
view of the applications I had in mind; mainly I had to have a larger category of
representations to deal with. That is, in order to make parallels between, say, the
classical decomposition results and the characteristic-free ones, some combinatorial
techniques had to be replaced by exact and spectral sequences. Obviously, to have such
sequences, one must have a large enough category of modules at hand. So, with K. Akin
and J. Weyman [A-B-W] we developed the notions of Schur and Weyl modules
associated with arbitrary shape matrices (originally these were called Schur and
Coschur functors). These reconstructed the usual representations if the shape matrix
were that of a partition or a skew-partition, but we also had new shapes which had
never been treated in the classical theory and which are nevertheless essential; the first
of these new shapes emerged as the kernel of a very natural surjection between skew-
partitions, and others as kernels of surjections between these, etc. At the cost of a
certain amount of redundancy, let me quickly run through some basic definitions.

A shape matrix is an sxt matrix:
A= (a,.j), with a;= Qorl.

Denote by aj the row sum of the ith row of the matrix, and by bj the column sum of
its jth column.

Given a free module, F, over the commutative ring, R, the Schur and Wey!
maps associated to the shape matrix and the module F are defined as the following
composite maps:

A" F®---@A"F ® 8, F&---®S, F®

A" F® - QA*F® _ S, F®--®S F®
. —_—> :

A"F®--@A“F — - §, F®--®S, F;

A FQ.-- @A™ F S, F®---®S, F

D, F®~~-®D0"F® A"FR. - - QA" F®

D, F®-®D, F® _ A"F® - -®\*F®
: - :

D, F®--®D, F — — A"F®--®@A"F,

Da,, F® --® Da,, F A FQ-- - QA F

where the left maps are diagonalizations as indicated, the middle maps are the obvious
identifications (due to the fact that a; are all 0 or 1), and the right maps are the
multiplication maps down the columns.

The image of the first map is called the Schur module of F of shape A, and the
image of the second, the Wey! module of F of shape A, denoted Las(F) and Ky (F)
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respectively. One of the fundamental theorems proven about these modules, when A is
the shape matrix of a skew-partition, is the Standard Basis Theorem.

(Recall that the matrix A is called the shape matrix of the skew-partition
Aluif

a; =0 forj=1,--1;

a;=1foru,+1<j <A,

This corresponds to the shape:

tl'l-1| 1
[ ]

where each row has A4, —y; boxes fori=1, .., n,and t; = g, -y, for i=1, .., n1
The corresponding matrix has the form:

00 - OOQ;[I ves 111]1_
" Ay
90 -+ 0011 .- 11100

#2 Armiy

060 --- O11 --- 110000
U —

Ha Ay1=Ha
0 - 01 - 10000000
——————

Ha Au=ty

We then usually write LM#(F), K,, (F) instead of L,(F) and K,(F).)

I

The Standard Basis Theorem says that for skew-partitions, the modules
L, ,”(F ) and K, ,”(F ) are universally free, and that their bases can be described as the
set of standard tableaux in terms of a given basis of F. The universality of these

modules implies that they are obtained from their integral forms by extension of base
ring (or reduction of base ring, in the case of modular representations).

A special case of a more general theorem found in [A-B1] says the following:
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Let M and N be integral polynomial representations of GI(F) of degree r, let p be a
prime, and let Ay be the integral Schur algebra of degree r. Denote by X the Z /(p) -
module (- algebra) X ®, Z/(p). Then we have the exact sequence:

0 — Ext, (M,N)®Z/(p)— Ext; (M,N)— Tor,(Ext;'(M,N),Z/ (p))— 0.

Suppose now that A is a partition: A =(4,,---,4,), that d is a positive integer,
and that g is the partition obtained from A by taking d boxes away from some row of

A and attaching them to some higher row (assuming that we still obtain a partition),
ie.

# = (ﬂ'l’“"lk +d’”.’ﬂ'k+j _d’...’l").

A standard question in modular representation theory is: What is the Z/(p)-
dimension of the Z/(p)-vector space Extj-\ (I?l,l?” ),where the notation is as indicated

above. These numbers are called intertwining numbers. From the exact sequence above,
we see that it suffices to calculate the integral Ext groups, since the modular ones are
simply the p-torsion part of one integral Ext plus the reduction modulo p of another.

A fairly straightforward argument shows that it suffices to consider the case
where we take d boxes from the last row and attach them to the first one. As you
might imagine, this is not the heart of the difficulty. Of course, straight homological

algebra tells us that we merely have to find a projective resolution, P, of K, over Ar,
and then simply calculate the cohomology of Hom,_ (P,K,).

In [A-B1], Akin and I proved that K, admits a finite projective resolution
whose terms are direct sums of tensor products of divided powers (suitable tensor
products of divided powers are Ap-projective). Moreover, we showed that, if
a=(a,, ,a,) is an integral weight of degree r, then HomAr(Dml ®"'®Da,’N) is the
weight submodule of the representation N corresponding to the weight o. Therefore, in
our case with N= K, the calculation of Hom, (P,K,) comes down to the calculation

of certain weight submodules of K. That this is computable is due to the fact that

the weight submodule of K, is the free abelian group generated by the standard

tableaux of shape g and content a.

Now we know that Hom,_ (P,K,) is a complex of free abelian groups, and that
its cohomology is torsion (since over the rationals the cohomology is zero). If we write
down the maps in HomA'(P,K”) as integral matrices, elementary arguments show us
that the cohomology groups are determined by the invariant factors of those matrices
(the non-zero invariant factors). To calculate those matrices, we must know the maps
in the projective resolution P. And so I've returned, as so often in the past, to the
problem of finding some explicit form of projective resolutions, this time associated to
Weyl modules.
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In [A-B1], Akin and I wrote down explicit projective resolutions of two-rowed
skew-partitions, and in [B-R1], Rota and I made use of letter-place techniques to define
a splitting homotopy for these resolutions. Rota and I are now working to describe
explicitly the resolutions of n-rowed shapes, and have succeeded in finding exactly
what the terms of these resolutions are. As yet, we have not found the boundary
maps.(We’ve made some progress on a class of three-rowed shapes, for which the
boundary maps can be described [B-R2].) I won’t go into detail on this subject, but I
should say that the extended class of shapes that arose in my work with Akin ([A-B1])
plays a key role in this problem (I can even describe the terms in their resolutions).
Since these shapes cannot be avoided in the characteristic-free representation theory,
their study seems to be of prime importance. But more about that another time.

However, we can momentarily avoid the problem of exhibiting these resolutions
if we’re willing to just study the intertwining numbers for i = 0, that is if we just

want to study the dimension of Homy (I?A,E” ). For in this case, as already observed,

we need only calculate the p-torsion of Ext}"(Kl,Ku) (the corresponding Hom group is
zero), and from the remarks I made about the nature of the cohomology of
HomAr P, K, ), it suffices to know a presentation of K,. And this we do know, thanks
to the proof of the Standard Basis Theorem. For two-rowed shapes and arbitrary d, the
problem was solved many years ago by Akin and me ([A-B2]). In 1987 I spoke about
this problem for three-rowed shapes at MSRI ([A-B2]), and wrote down the integral
matrix whose invariant factors have to be computed. That same summer, I pointed out
to D. Flores that in the three-rowed case it was not yet even proven (although
conjectured) that the Ext group was cyclic. In 1991, she proved that it was indeed
cyclic [F], and we then started to look for the highest invariant factor. Akin and I had
made a conjecture, or rather a guess, about it (because we had calculated the case d =
2), but in 1988, by using a computer at the Politecnico di Torino, I found that that
guess was wrong, and passed on a modified guess to Flores. She worked on the problem
for a while, enough to find that the last guess was wrong too but, since the matrices
are rather large (you’ll soon see), it was getting more and more difficult to get insight
into the computations. Finally, around a year ago, a graduate student of Eisenbud’s
(who has since finished his degree) named Michael Johnson wrote out a subprogram in
Maple which enabled us to check some larger examples (the size of the problem
depends upon d), and to get some idea as to the arithmetic that was going on. Finally
last fall, we hit on the pattern that seemed to make sense, and by December we had a
proof that our guess was correct. I'll end by outlining very broadly some of what is
involved in the proof. A detailed account of it will be published elsewhere [B-F].

We start with a three-rowed partition A =(4,,4,,4,), an integer d< A, and
we define the partition p to be (4, +d,A,,A,—d). If we define s,=1,—A4,, and

s, = A, — A,, calculations described in [AB2] tell us that Extlv (K,;,K,) is Z/(8), where
& is the highest invariant factor of the matrix:

M(s,,sz,d)=<Ad|Bd

-0
M(s,,s, +1,d-1)
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where
+d+1
s+d+1 ) ) (-1)“"(3‘ +j+l)
d 0 0
1
Ad = d >
0
) :
: d
0 0 (-1)‘( d)
+2
s+ 1 -(52 2 ) - 1)4_1(32 ; d)
d 0 0
1
B, = d

By adding to the jth column of By the jth column of A4 multiplied by
(-1}-1, the block By takes the form:

a H, - H,
0 0 - 0
O : b
0 0 - 0
o= (0 [
where / J J

l

39

) Lo —(s,+1) .
Since Hj = Z , where @ =s5+s5,+d+2, we reduce B,, by column

Jj-=1

1=1
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transformations, to:

a
2
B, = 0 0
0 0
Next, since
a
oy

} = gcd{a,(

= ged(a,lemfl,---,d
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)

we may reduce the matrix B;, by column transformations, to the matrix:

ad 0O -+ 0
0 0 - 0
e R |
0 0 0

If to the last column of each block A4, j = 0,...,d-2, we add the last column of A4 j,

each block Ag.j takes the form:

(+d—j+1) —(

| ~(d-J)

4,

-j =

0

0
We should note that when j = d-2,

s;+d—-j+1
2

0
d-j
2

s +3) -(s'”)
A= 2 )

-2 (5+2)

)

(s +d—-j+1
_ld—]—]l
()

d-i s, +d—j
i)

0

This leads us to make the following slightly different definitions.
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Define:

0 3 s+3
N(a,s,2)=| % S S
0 o -2 s+2

and, inductively,

s+d+1 s s+td+1
a, s+d+1 - - 0 0 - 0
2 d
d s+d
0 - 0 -p*? N(e,s.d -
(J -1 (d_lj (a,5,d-1)
N(a,s,d)= d
0
)
0 : :
d
RN nd -1
0 0 -1y (d-—l) 0

where ¢ and d are positive integers, s is a non-negative integer, and a > s+d+1.

d+2
It is easy to see that for d 2 2, N(o,5,d) is a dx{( 5 )—2} matrix.

The main result that D. Flores and I have at this point is:

THEOREM: Let 8(c,s,d) denote the highest invariant factor of the matrix
N(e,s,d) above. Then

(]
« 2 pa,s+d—k+1,k)

é(a,s5,d)= .
y(a,s+d+1,d) o y(o,s+d—k+1,d-k)

where y(u,v,w) = gcd{u,v,lcm{l,---,w}}.

As you can see, the proof is largely an organization of these matrices into blocks
that we can handle. This accounts for the next bit of notation:

For positive d and non-negative s (integers), define:

srd+l _(s+d+1) (_l)d-z(“d‘”) (_1)d_l(s+d+1)

2 d-1 d
d s+d
- 0 —~1)42
i (i)
A'(s,d)= d !
&) 0 ’ 0 0
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and set
A'(s,d) 0 0
A(s,d-1) - 0
A(s.d)= (vd=D )
0 0 - A'(s,2)
and
a, O 0
Q, 0
B(a,d)= -
0 0 a

By induction on d, (d = 2) we show that the dxd minors of A(s,d) are all zero. This
latter is shown by using elementary column transformations in Q.

Once the above is proven, we know that the dxd minors of our matrix N(a, s, d)
are very special. The rest of the argument is a detailed study of the p-divisibility
properties of certain ones of these minors.

The proof as it now stands is not too transparent, and should be improved. The
reason for this is not simply a matter of elegance, but necessity: in studying the n-
rowed case (with R. Sanchez in addition to D. Flores) there are a number of recursions
that one sees entering the picture, and matrices very similar to, but much larger than
the ones here considered have to be dealt with.

You can see how far Maurice and I had diverged by the time we had both
wandered into representation theory. I suppose one can say, though, that the common
thread that we always held onto was the belief that more traditional mathematics was
amenable to treatment by homological methods. When we were taking Sammy
Eilenberg’s course in Homological Algebra, Sammy would occasionally remark that
"the universe is cohomological”. He meant this always in the sense that cohomology is
more ”natural” than homology. I think that Maurice and I tended to carry the dictum
one step further: the universe is cohomology. The textbook that we wrote together was
a public sermon to that effect; we were going to show the world how classical algebra
could have developed if homological algebra had been around since creation. For me, I
know, the main part of my work has been to detect the "call for homology” in various
parts of mathematics. The localization and factoriality problems in local ring theory
were undertaken not so much because I was dying to know if they were true or not
(after a while, of course, I was interested in the outcome), but because I felt that they
were an area calling out for homological treatment. You see that also in my approach
to characteristic-free representation theory. I believe that Maurice was impelled by the
same credo. Although less obsessive than I in pursuing some problems to the very end,
his early involvement in commutative ring theory (with me and with others), and
certainly his unique categorical and split-exact approach to representation theory bear
this out. This belief was of course always tempered by reality; if not we’d have been in
serious trouble!
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Abstract

In this paper we survey, without proof, the main structural results
of Koszul algebras. We also survey the extension of this theory to
semiperfect Noetherian rings. Applications to algebras of global di-
mensions 1 and 2 are discussed as well as applications to Auslander
algebras and to preprojective algebras.

1 Introduction and Definititons

Koszul algebras have played an importart role in commutative algebra and
algebraic topology {22, 16, 17, 3, 4, 24, 25]. Recently there have been impor-
tant applications of noncommutative Koszul algebras to algebraic topology,
Lie theory and quantum groups [8, 7, 23, 5]. This paper begins with some
terminology and definitions in this section. In section 2, we survey the main
results about Koszul algebras. Definition of a Koszul algebra follows in this
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section. The proofs of the results in this section can be found in [14, 15].
In section 3, we survey the main results about Koszul modules stressing the
duality between the category of Koszul modules of a Koszul algebra and the
category of Koszul modules over the Yoneda algebra. Again, proofs may
be found in [14, 15]. The cited references, the concept of a Koszul algebra
and module is extended outside the graded case. The notion of quasi-Koszul
algebra is introduced. A definition is given later in this section. This exten-
sion is summarized in section 4. Section 5 surveys relations between Koszul
algebras and algebras of global dimensions 1 and 2. The Auslander algebra
is also introduced there and shown to be quasi-Koszul. The results up to this
point, in the generality described, was joint work with R. Martinez Villa.

Section 6 briefly introduces the notion of a Grobner basis and shows who
these are related to Koszul algebras. Finally section 7 applies these ideas
to show that a certain class of generalized preprojective algebras are Koszul
algebras.

We study quotients of path algebras, a class of rings that include quotients
of free associative algebras and quotients of commutative polynomial rings.
The generality provided by path algebras, algebras which naturally occur in
the studying finite dimensional algebras, justifies studying the nonlocal case.

We briefly recall the definition of a path algebra and refer the interested
reader to [2] for further details. The notation introduced in this section will
be used throughout this paper.

Let I be a finite directed graph and K a fixed field. The path algebra, KT,
is defined to be the K-algebra having as K-basis the finite directed paths in
I'. Thus, elements of KT are finite K-linear combinations of paths. “Path”
will always mean directed walk in I' in all that follows. We let T’y denote the
vertex set of I' and T'; denote the arrow set of I'. If a € I'; then we let ofa)
denote the origin vertex of a and (a) denote the terminus vertex. We will
sometimes write a : o(a) — t(a). If v € T’y we set o(v) = v = t(v). Note that
the vertices of I' are viewed as paths of length 0, where the length of a path
is the number of arrows occuring in the path. If p = a, ... qa; is a path with
a; € ', then o(a;) = t(a;—1) for ¢ = 2,...,n. The multiplicative structure is
given by linearly extending the following multiplication of paths. If p and ¢

are paths then we define p- ¢ = { I:)q lfigﬁl ;vi(;fep ) Note that if v = o(p)

or v = t(q) then we definep-v=pandv-qg=gq.

There is an alternative description for path algebras (see [2, 11]). If R
is a finite product of copies of K we may view R as a K-algebra where K
acts diagonally in R. If M is a finite K-dimensional R- R-bimodule then the
tensor algebra Tr(M) = ROM S (M Qg M)D(®%M)®- - - is isomorphic to a
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path algebra. Conversely, if KT is a path algebra, the subalgebra generated
by the vertices, R, is isomorphic to a finite product of K’s. Moveover, the
vector space generated by the arrows, call it M, is an R-R-bimodule. Then
KT 1s isomorphic to the tensor algebra Tr(M). It is easy to see that the
free associative algebra in n noncommuting variables is isomorphic to the the
path algebra KT where T is a graph with exactly one vertex and n loops at
the vertex.

We will view a path algebra as a positively Z-graded algebra with the
paths being homogeneous elements of degree equal to their lengths. We will
call this grading the length grading. Viewed as a tensor algebra Tr(M), this
is the natural grading where Tpr(M), = @M. If I is a homogeneous ideal
in KT, then the quotient ring, KT/I, inherits the positive Z-grading. As
further justification of studying path algebras, we have the following result.
Suppose that S = Sp + S; + So + --- is a positively Z-graded K-algebra
satisfying the following three conditions.

1. Sy is isomorphic to a finite product of copies of the field K.
2. Each 5; is a finite dimensional K vector space.
3. S is generated in degrees 0 and 1.

The last condition means that 515, = S,y for all » > 1. Under these
assumptions, S is isomorphic to a graded quotient of a path algebra (with
the length grading).

We now introduce more notation and conventions which will be used in
the remainder of paper. Let J denote the two-sided ideal in KT generated
by the arrows of I'. Note that J is the graded Jacobson radical of KT with
the length grading. We let I denote a two-sided ideal in KT and we will
always assume that I C J2. Let A = KT/I be the quotient algebra. We
will assume that either I is a homogeneous ideal in the length grading or
that A is a Noetherian semiperfect K-algebra. In the former case, we let
r denote graded Jacobson radical of A; that is, if A = Ag + Ay + As + -~
then r = Ay + Az + -+ -. In the latter case, we require that r is the Jacobson
radical of A. We will call the first case, the graded case and the second case
the nongraded case.

In the graded case, we will be interested in finitely generated graded
modules and degree 0 homomorphisms; whereas, in the nongraded case, we
will be interested in finitely generated modules and A-homomorphisms. In
both cases, the assumptions on A imply the existence of minimal projective
resolutions of modules. Of course, in the graded case, this will mean graded
projective resolutions.
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Let E(A) = >0 Ext3(A/r,A/r) = Exti(A/r,A/r) be the Yoneda alge-
bra of A. That is, E‘(A) is given a multiplicative structure using the Yoneda
product (see [19]). E(A) has also been called the Ext-algebra of A and
also the cohomology ring of A. We view E(A) as a graded K-algebra via
E(A)n = Ext}(A/r,A/r). We say that A is a quasi-Koszul algebra if E(A) is
generated in degrees 0 and 1; that is, if Ext}(A/r,A/r) - Ext}(A/r,A/r) =
Extht (A/r,A/r) for all n > 0. In the graded case, if E(A) is generated in
degrees 0 and 1 we say that F(A) is a Koszul algebra.

2 Fundamental Theorems on Koszul Algebras

Throughout this section, we assume that A = KT'/I is a graded K-algebra
with the length grading and that [ is contained in J? where J is the ideal
in KT generated by the arrows. We say a graded A-module M is generated
in degree 1 if M, = A,_;M; for all n € Z. We say a graded module M
has a linear resolution if M is generated in degree 0 and if there is a graded
projective A-resolution of M

RN N LY - NN N LG - NECQ ¥

such that for n > 0, P, is generated in degree n. We get the first main result
which provides an equivalent description of a Koszul algebra.

Theorem 2.1 [14, Cor 3.4] [22, 8] Let A = Kl"/I be as above. Then the

following statements are equivalent:
1. A is a Koszul algebra.

2. As a graded A-module generated in degree 0, A/r has a linear resolution.

The next result is also fundamental.

Theorem 2.2 [14, Thm 6.1] [22, 8] If A = KT /I is a Koszul algebra then
the Yoneda algebra E(A) = Exty(A/r,Afr) is a Koszul algebra.

We remark that even if A is a commutative algebra, E(A) is, in general,
not commutative. Furthermore, even if A is finite dimensional, E(A) need
not be Noetherian. Thus, the setting of noncommutative rings which are not
necessarily Noetherian naturally arises in the studey of Koszul algebras.

We say that A = KT /I is a quadratic algebra if I is generated linear
combinations of paths of length 2. Note that A is quadratic if and only if 1
is homogeneous in the length grading and generated by elements of degree 2.
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Proposition 2.3 [14, Cor 7.3] If A is a Koszul algebra then A is a quadratic
algebra.

We remark that the converse is not true in general. For example, if T is
the graph

vy

(o]

a
v hd vy
[s] o
—
b

[
d
and I is the ideal generated by ba,ab + dc, and cd in KT then although I is
quadratic, it is not hard to show that KT'/I is not a Koszul algebra.

The next result describes the algebra structure of the Yoneda algebra of
a Koszul algebra. For this we need some further notation and definitions.
We let T denote the opposite quiver of . That is, I = 'y and I'{ =
{a° : v - w | where a:w — vis an arrow in I'}. Let V, denote the vector
space in KT spanned by the paths of length 2 in " and let Vi’ denote the
vector space in KT'%? spanned by the paths of length 2 in T'°P. Let z1,...,2pm,
be the K-basis of V5 of paths of length 2. Similarly, let z9,...,z2, be the
corresponding basis of of V; that is, if z; = ab with @, 5 € T’y then z{ = b%a°.
If W is a K-vector space we let W*, the dual space of W, be Homg (W, K).

We let {z}} denote the dual basis of V3 associated to the basis {z;} of V5.
Then we have a canonical bilinear form

<,>:‘/2XV20—’K

given by < z;,z7 >= zj(z;) where z] € V' is part of the dual basis {z]}
associated to the basis {z;} of V5. Finally, if Z is a subspace of V5, then
Zt={z€eVy| <Z,2° >=0}.

We can now give the structure of the Yoneda algebra of a Koszul algebra.

Theorem 2.4 [15, Thm 2.2] [17] Let A = KT /I be a Koszul algebra and let
I, = 1NV, Then E(A) is isomorphic to KT [ < I3 >. O

Note that if Z is a subspace of V3, then (Z+)t = Z. We get the following
result.

Corollary 2.5 [15, Thm 2.3] Let A = KT /I be a Koszul algebra. Then
E(E(A)) is isomorphic to A as graded algebras.

We have a partial converse to this corollary.
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Theorem 2.6 [15, Thm 2.4] Let A = KT /I be a graded algebra with the
length grading. Then A is a Koszul algebra if and only if E(E(A)), the
Yoneda algebra of the Yoneda algebra of A is isomorphic to A as graded
algebras.

We give two final ring theoretic results about Koszul algebras.

Proposition 2.7 [15, Cor 4.8] If A = KT /I is a Koszul algebra then the
opposite algebra of A, AP is also a Koszul algebra.

This result can be interpretted as saying that A is a Koszul algebra if and
only if A/r has a colinear injective resolution. The definition of a colinear
injective resolution is left to the reader.

Theorem 2.8 [15, Thm 3.7] If A = KT/I and A’ = KT'/I' are Koszul
algebras then A ®k A’ is a Koszul algebra.

3 Fundamental Results on Koszul Modules

We now turn our attention to modules. We will always assume that all mod-
ules are graded A-modules and all A-homomorphisms are graded homormor-
phism of degree 0. That is, if f : M — N then for all n € Z, f(M,) C Np,.
We denote the category graded A-modules and degree 0 homomorphisms
by Gr mod(A). We have a functor £ : Gr mod(A) — Gr mod(A°) given
by E(M) = ,»oExti(M,A/r) = Extj(M,A/r). In general, even if M
is generated in degree 0, the same need not be true for £(M). This leads
to the following definition. We say a graded A-module is a Koszul module if
&(M) has the property that for each n > 0, Ext} (A/r,A/r)-Ext} (M, A/r) =
Ext}*!(M, A/r). The product is the Yoneda product. In particular, a Koszul
module is generated in degree 0 as a graded E(A)-module. If A is a Koszul
algebra, then the converse is true; that is, M is a Koszul module if and only
if M is generated in degree 0. If X is just a A-module (not necessarily grade-
able) then we say X is a quasi-Koszul module if £(M) has the property that
for each n > 0, Exth(A/r, A/r) - Exti(M, A/r) = Ext}*' (M, A/r).
Our first result is a module version of Theorem 2.1.

Theorem 3.1 [14, Thm 3.3] Let A = KT/I be a graded algebra with the
length grading and let M be a graded A-module generated in degree 0. Then
the following statements are equivalent:
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1. M is a Koszul module.

2. M has a linear graded projective resolution.

As an immediate consequence, we see that A is a Koszul algebra if and
only if A/r is a Koszul module. The next proposition presents some homo-
logical properties of Koszul modules.

Proposition 3.2 [14, Props. 5.2,5.3] Assume that A = KU/I is a graded
algebra. Let 0 - A — B — C — 0 be a short exact sequence of graded
A-modules. Assume that rBNA =rA. Then if A and C are Koszul modules
it follows that B is a Koszul module. If A and B are Koszul modules then so
isC.

Before turning to the category of Koszul modules in a Koszul algebra,
we present a final important homological result. The following result is one
of the main tools used in proving many of the results of this and the last
section. If M is a graded A-module, we will denote the n*?-graded syzygy of
M by Q*(M).

Theorem 3.3 [14, Thm 5.6] Let A = KT /I be a Koszul algebra. Then for
any finitely generated graded indecomposable, projective A-module P and for
any positive integer n,

1. for each t > 1, there exists a short exact sequence
0— (" 1P) = Q' (xr""1P/r"P) —» Q*~1(x"P) — 0,
and

2. for each t > 1, there is a short exact sequence

0 — Ezty '(x"P,A/r) — Ezti(x* *P/t"P,A/r) — Ezty(x"~'P,A/r) — 0.
(m]

For the remainder of this section we assume that A = KT'/I is a Koszul
algebra. We let K5 denote the category of Koszul modules over A and de-
gree 0 homomorphisms. Similarly, we let Kg(s) denote the category of right
Koszul modules over E(A) and degree 0 homomorphisms. We denote the
k**-shift of a graded module M by M(—k). That is, M(—k) = N where
Np = My 4. Finally, let rg(a) denote the graded Jacobson radical of E(A).
Thus rpa) = Hay1 Exti(A/r, A/r).



52 GREEN: Introduction to Koszul Algebras
Proposition 3.4 [15, Prop 5.1] Let A be a Koszul algebra. Then € : Ky —
Gr mod(E(A)°) given by £(M) = Exty (M, A/r) satisfies the following prop-

erties:

1. If W is a semisimple, graded, finitely generated A-module generated
in degree 0 then W € K, and E(W) is a finitely generated, graded
projective E(A)°P-module generated in degree 0. Hence W € Kp(a).

2. If P is a finitely generated, graded projective A-module generated in
degree 0 then E(P) is a finitely generated semisimple E(A)°P-module
generated in degree 0. Hence E(P) € Kg(a).

8. If M € Kp then v¥*M(—k) € K for k > 1 and also Qp)E(M)(—k) =
E(r*M(=k)) for k> 1.

4. If M € K then E(M) € Kg(ay and rpa)&(M) = 51 Exty(M,A/r).

5. If M € Kp then EQM)(~1))=remE(M)(~1) and £(QE(M)(~k))=
PE(A)g(M)(—k) for k> 1.

As this proposition hints at, there is a duality here.

Theorem 3.5 [15, Thm 5.2] Let A = KT'/I be a Koszul algebra with Yoneda
algebra E(A). Let Kp and Kga) denote the categories of Koszul modules in
A and E(A)°P respectively. Then the contravariant functor £ : Kn — Kg(a)
given by E(M) = [0 Eata(M, A/r) is a duality.

4 The Nongraded Case

Throughout this section, A will denote a semiperfect Noetherian K-algebra
with Jacobson radical r. Many of the results about Koszul algebras remain
valid in this setting. We begin by defining what a “linear resolution” would
mean in this nongraded case. Let M be a finitely generated A-module and
let

(*) =P BP PR L M0

be a A-projective resolution of M with each P; finitely generated. We say
(*) 1s a linear resolution of M if for each i > 0, ker(f;) C rP; and rker(f;) =
r?P; Nker(f;). It is not hard to show that in the graded case, minimal
graded linear resolutions have these two properties (with r being the graded
Jacobson radical). We can now state our first result.
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Theorem 4.1 [14, Thm 4.4] If A is a semiperfect, Noetherian K -algebra
and M s a finitely generated A-module, then the following statements are
equivalent:

1. M is a quasi-Koszul module.

2. M has a linear resolution.

In this nongraded case, we need another concept. We say a finitely gen-
erated A-module is strongly quasi-Koszul if (*) is a minimal projective reso-
lution of M and satisfies for each : > 0 and £ > 1

rf ker(f;) = v**! P N ker(f;).

We say a semiperfect Noetherian ring, A, is strongly quasi-Koszul if every
simple A-module is strongly quasi-Koszul. Note that in the graded case,
every finitely generated Koszul module is strongly quasi-Koszul [14, Lemma
5.1]. We have the following theorem.

Theorem 4.2 [14, Thm 6.1] Let A be a Noetherian, semiperfect, strongly
quasi-Koszul ring. Then the Yoneda algebra E(A) is a graded quasi-Koszul

ring. O

In [14], there are nongraded versions of Proposition 3.2 and Theorem 3.3
of the previous section of this paper. Further study of the nongraded case
is called for. The relationship between a strongly quasi-Koszul semiperfect
Noetherian ring A and its associated graded ring, Gy(A) = A/r + r/r? +
r?/r3®+. .- should be investigated. Assuming that A is strongly quasi-Koszul,
semiperfect and Noetherian, is the associated graded ring Koszul? In this

case, is the associated graded ring Gy(A) isomorphic to the Yoneda algebra
of the Yoneda algebra of G.(A)?

5 Global Dimensions 1 and 2 and Auslander
Algebras

Suppose that A = KT. Then A is global dimension 1 and since I = (0)
we see that A is a Koszul algebra. Applying Thm 2.4, we see that E(A) is
isomorphic to KT'%? /(L°)?, where L° is the ideal in KT generated by the
arrows of I'?. Then next result describes the Koszul modules in this case.
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Proposition 5.1 [15, Props 6.1, 6.2] Let A = KT and r be the ideal gener-
ated by the arrows of KT'. Then

1. A graded A-module M generated in degree 0 is a Koszul module if and
only rM is projective.

2. If M is a (graded) Koszul A-module then every finitely generated sub-
module of M is quasi-Koszul.

3. If M is a graded A-module with minimal graded projective resolution
0— P, ER Py — M — 0, then the following statements are equivalent:

(a) M is a Koszul module

(b) for every split monomorphism g : Q@ — P; the coker(fg) is a
Koszul module.

(c) for every indecomposable projective module ) and split monomor-
phism g : Q — Py, the coker(fg) is a Koszul module.

Note that, since the global dimension of KT /I is at least 2, if I # (0)
and I C J? where J is the ideal generated by the arrows in I, the only case
of global dimension 1 is the path algebra KT'. The next result that shows
that every quadratic global dimension 2 algebra is a Koszul algebra.

Theorem 5.2 [14, Thm 7.2] Let A = KT'/I be a K-algebra. Assume that I
s generated by quadratic elements and that the global dimension of A is 2.
Then A is a Koszul algebra.

The Auslander algebras are a class of algebras of global dimension 2.
But, in general, they need not be quadratic. They are always quasi-Koszul.
Recall the definition of the Auslander algebra. Let A be a finite dimensional
algebra over a field K. We say A is of finite representation type if there are
only a finite number of nonisomorphic indecomposable finitely generated A-
modules. Suppose that A is of finite representation type and let X;,..., X,
be full set of nonisomorphic indecomposable A-modules. Set X = [I7; X;.
Then the Auslander algebra of A is A = End4(X)°P.

The (non-semisimple) Auslander algebra is always of global dimension
2,2, Prop 5.2]. We have the following result.
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Theorem 5.3 [14, Thm 7.4] Assume that K is an algebraically closed field.
Let A be a finite dimensional K -algebra of finite representation type. Then
the Auslander algebra of A is a quasi-Koszul algebm.EI

We end this section by describing some of the properties of the Yoneda
algebra of an Auslander algebra. Keeping the notations above, if A is an al-
gebra of finite representation type and M is an A-module, then Homy (M, X)
is a projective A-module where A = End4(X)°" is the Auslander algebra of
A. If M is an indecomposable A-module then Hom,4(M, X) is an indecom-
posable projective A-module. We let [M] denote the simple A-module which
Hom4(M, X) maps onto.

Theorem 5.4 [14, Thm 8.2] Let A be a finite dimensional K -algebra of
finite type over an algebraically closed field . Let A be the Auslander algebra
of A and let E(A) denote the Yoneda algebra of A. Then a projective E(A)°P-
module Py = [13_, Exti ([M], A/r) is injective if and only if the simple A-
module [M] corresponds to a noninjective A-module M. In particular, E(A)
is Loewy length 3 and each projective of Loewy length 3 is injective. Moreover,
E(A) is 1-Gorenstein.

A complete description of the Yoneda algebra of an Auslander algebra
would be interesting. In particular, suppose that ¥ is a Koszul algebra
satisfying the following properties:

1. The Loewy length of ¥ is 3.

2. Each indecomposable projective X-module of Loewy length 3 is injec-
tive.

3. ¥ is 1-Gorenstein.

What extra conditions imply that E(X) is an Auslander algebra?

6 Grobner Bases and Koszul Algebras

In this section we present a sufficient condition for an algebra to be a Koszul
algebra. We briefly introduce Grobner bases in path algebras. For more
details, see [9]. We need an admissible order on the paths. Let I be a finite
directed graph and let B denote the set of finite directed paths in I'. Recall
that we view the vertices as paths of length 0. A well ordering < on B is
called an admissble order if it satisfies the following properties:
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Cl if p,q € B and p < ¢ then pr < ¢r for all r € B such that both pr and
gr are nonzero.

C2 if p,q € B and p < ¢ then sp < sq for all s € B such that both sp and
$q are nonzero.

C3 if p,q,r,s € B and p = rgs then ¢ < p.

There are many admissible orders possible. For example, if we arbitraryly
order the vertices of I', and arbitrarily order the arrows then we define a
length-lexicographic order as follows. If both p and ¢ are both vertices or
both arrows, use the above arbitrary order. If p,q € B then p < ¢ if either
the length of p is less than the lengthof gor p=a,...a; and g=5,... 5
with a;,b; € T'; and for some ig > 1, a; = b; if § < 4 and a;, < b;,. It is easy
to check that < is an admissible order.

We will assume for the remainder that < is an admissible ordering on B.
Let z = 3 ; cipi € KT — {0} where o; € K — {0} and the p; are distinct
paths. We let tip(z) = p; if p; > p; for all paths p; in z. If p and ¢ are
paths, we say p divides ¢ and write p|q if there exist paths r and s such
that ¢ = rps.

Let I be an ideal in KT and suppose that G = {fi,..., fo} generate
I. We say that G is a Grébner basis for I (with respect to <) if for each
nonzero f € I there exists an f; € G such that tip(f;) | tip(f). There is an
easy check to determine if a finite set of elements of I is a Grébner basis. In
general, given an ideal I, there is no finite Grobner basis; but, if KT'/I is
finite dimensional, then there is a finite Grobner basis and a finite algorithm
to find this basis, see {9, 20]. Furthermore, if there is a finite Grébner basis
then there is a finite algorithm to find the basis. If there is a Grobner
basis consisting of quadratic elements, then there is a finite Grébner basis
consisting of quadratic elements and hence can be found algorithmically. The
next result has many interesting consequences, one of which will be given in
the next section.

Theorem 6.1 [13] Let A = KT'/I be a graded algebra with the length grading
and let < be an admissible order on the paths of I'. Suppose that I has a
Grébner basis consisting of quadratic elements. Then A is a Koszul algebra.

0

The actual result in {13] shows that the Anick-Green projective resolution
of A/r (see [1]) is a minimal projective graded resolution. Thus, in case there
is a quadratic Grébner basis, the linear resolution of A/r can be constructed
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explicitly. In {13], the theorem is used to show algebras of maximal minors
and algebras obtained from straightening rules are Koszul algebras. We also
remark that the above theorem can also be used to show that quadratic
algebras with Poincaré-Birkhoff-Witt bases are Koszul algebras ([12]).

7 Generalized Preprojective Algebras

In this section we present a new class of Koszul algebras. We begin with an
undirected graph G. We allow G to have multiple edges and loops. Give
G some orientation which we denote by a Let a,,...,a,, be the arrows
in G. For each arrow a; : v — w, let af : w — v be a new arrow in the
opposite direction as a;. We let I'g be the directed graph with vertex set the
same as G and with arrow set {ay,...,am}U{af,...,a%}. Note that I'g is
independent of the orientation chosen for G. We now define a set of elements
in KTg. For each vertex v € (T'g)o, let r, = Y2, 0i(v)a;a? + 7i(v)afa;
where ¢;(v) and ;(v) are elements in K. We require o;(v) # 0 if and only if
the origin of af is v and 7;(v) # 0 if and only if the origin of a; is v. Let Ig
be the ideal in KT generated by the {r, }uerg),- We call A = KT'g/Ig a
generalized preprojective algebra. If the nonzero os and 7s are all 1 then A is
called a preprojective algebra. The preprojective algebras have appeared in
the study of the representation theory of finite dimensional algebras, [6, 10],
and more recently, in some geometrical considerations of Nakajima [21].
We give an example for clarification. Suppose that G is the graph

Uy Yy

| l

k7EY Vg (53
. 3 . - .
Now give GG some orientation. For example, G might be
" ay v2
LN :
| a | ay
uy V4 as ¥3
83
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Then I'g will be the graph

vy id vz

a3 1| a a3 Tl as

v5

Tle

vy id Vg
—

wio

The generators of the ideal Iz are

Ty, = T1(v1)afa; + m2(v1)adas
Ty, = 01(v2)a1af + 73(v2)adag
Ty, = 02(vz)azad + 14(vz)aday
ry, = 03(vs)agad + ca(vs)esal + Tsadas
Ty, = O5a5ag

where the os and the 7s are some fixed nonzero elements of K.

We will show that if G is a graph with no connected component a tree,
then each generalized preprojective algebra KT'¢ /I is a Koszul algebra. We
will find a specific length-lexicographic order for the paths of I'g. For this
we need some preliminary results. Recall that the degree of a vertex v is
twice the number of loops at v plus the number of edges that are not loops
of which v is an endpoint.

Proposition 7.1 Let G be an undirected finite graph and let Gy and G
denote the vertices and edges respectively of the graph G. No connected com-
ponent of G is a tree if and only if there is a set function ¢ : Go — Gy such
that ¢ is one-to-one and for each vertex v € Gy, v is an endpoint of the edge

$(v)-

Proof. Suppose some connected component, G’, of G is a tree. Then the
number of vertices of G is one more than the number of edges in G'. Hence
no such ¢ can exist.

Now suppose that no connected component of G is a tree. We proceed
by induction on the number of vertices in G. If |Gg| = 1 then there must be
a loop at the vertex of (G and the result follows. Now assume the result for
graphs with n — 1 vertices, none of whose connected components is a tree.
Assume that |G| = n.

First suppose that G has a vertex of degree 1. That is, there is a vertex,
say v, which is an endpoint of exactly one edge, say e. Set ¢(v) = e. Remove
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v and e from G to obtain a new graph G*. It is clear that no component of
G* is tree since the degree of v is 1. The existence of ¢ follows by induction.

Next, suppose that G has no vertex of degree 1. Assume, without loss
of generality, that G is connected. Choose a vertex v € Gy and an edge
e € (7; such that v is an endpoint of e. Let G* be the graph obtained from
G after removing v and all the edges with at least one endpoint being v. Let
#(v) = e. If no component of G* is a tree, we are done by induction. Hence,
assume that G* has a component which is a tree. Let G** be a connected
component of G* which is a tree. Then G** has at least 2 vertices of degree
1. Both of these cannot be endpoints of e. Hence there is a vertex, say v*,
of G** of degree 1 in G** such that v* is not an endpoint of e.

We orient the edges in G** as follows. If ¢’ is an edge in G** with endpoints
vy and vq, orient €’ from vy to v, if vy is closer to v* than vy, otherwise, orient
¢’ from vs to v;. This makes sense, since G** is a tree and there is an edge
between vy and v3. For each vertex w € G** — {v*} choose an edge ¢,, € G**
such that the terminus of e, is w under the above construction. Now define
#(w) = e,. We have defined ¢ for all vertices of G** except for v*. But, in
G, the degree of v* is at least 2, where as in G** it is degree 1. Thus, there is
an edge e* with endpoints v and v*, which, by construction, is not e. Thus
define ¢(v*) = e* and we are done.

We can now state the main result of this section.

Theorem 7.2 Let K be a field, G be an undirected graph such that no con-
nected component of G is a tree. Let A = KT'g/Ig be a generalized pre-
projective algebra whose construction is described above. Then there is a
length-lexicographic order on the paths in I'¢ such that there is a quadratic
Grobner basis for Ig. Hence A is a Koszul algebra.

Proof. Let ¢ : Gy — G be a one-to-one set map so that for each vertex
v € G, v is an endpoint of ¢(v); which exists by Proposition 7.1. Let I'g
be the quiver obtained as above after we orient G. Let {a;,...,a,,} be the
(oriented) arrows of G (under some fixed orientation) and so the arrows of
g are {a1,...,am} U {a},...,a’,
Finally, for z = 1,...,m let ¢; be the edge in G associated to a;.

We now define the length-lexicographic order we will use. For this we need

to order the vertices and the arrows of I'¢. Order the vertices arbitrarily.

where if a; : v — w then of : w — v.

Now order the arrows as follows. Given a vertex v, consider ¢(v) = e. There
are two arrows associated to e of the form a and a°. Only one of these has
terminus v unless e is a loop. Call this arrow a, if e is not a loop and choose
a; as a, if e is a loop. Order the arrows of I'g so that the arrows of the form
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a, are larger than any arrow that is not of the form a,. Now consider the
generators {r,} of I,. We claim, under an order described above, {r,} is a
quadratic Grobner basis. If so, A is a Koszul algebra by Theorem 6.1. To
show this we need only show that there are no overlaps of tips of the {r,}
(see [9]).

By construction, only one edge, e, with endpoint v is of the form ¢(v).
So there is exactly one arrow labelled a, with terminus v. Thus, the other
arrows with terminus v are smaller than a,. Hence is r, = ca,b+ 3 oyp;
where b € (I'g)1, ¢, s € K* and p; are paths of length 2 of the form a;a? or
ala; with no arrow labelled a,. Note that bis not an a, either since it is also
associated to e by the terminus not v (or e is a loop and b = a?). It follows
that tip(r,) = a.b and there are no overlaps.

We note that in case G is a tree, R. Martinez-Villa has announce results
which classify in which cases the preprojective algebra is Koszul. He shows
that the graph G must not be a Dynkin diagram and his techniques are very
different than those of this paper.

We end this section with an example that shows that there are Koszul
algebras such that there is no order that yields a quadratic Grobner basis but
that the Yoneda algebra has a quadratic Grobner basis and we get a quick
proof that the original algebra is Koszul.

Let K be a field, not of characteristic 2 and let KT'/I be the algebra
K <z,y> /I where I is the ideal generated by z? — y? in the free associative
algebra in two noncommuting variables z and y, K < 2,y > Note the I' is
the graph with one vertex and two loops. Under no admissible ordering is
the Grobner basis of I quadratic. But note that if I5 is the span of 22— y? in
the vector space of generated by paths of length 2, then I3 is generated by
zy,yz, z? +y2. It is easy to show that {xy, yz,z? +y?} is in fact the reduced
Grébner basis for the ideal I* generated by I3-. Hence, K < z,y > /I*
is a Koszul algebra by Theorem 6.1. Now by Theorems 2.2 and 2.4, the
Yoneda algebra E(K <z,y> /I*) is a Koszul algebra which is isomorphic to
K<z,y>/<(I*)¢>. But (I*)y = (I§)* = I,. Thus A = E(K <z,y>/I*)
is a Koszul algebra.
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Old and recent work with Maurice

Idun Reiten

I met Maurice in 1970 in Urbana, Illinois, where I was a graduate student
of Robert Fossum. Maurice came to Urbana to work on representation theory.
He gave an advanced course, where he usually lectured, with great enthusiasm,
on what he had proved since the previous session. I saw something like this
for the first time, and I found the mathematics, and Maurice’s approach to
it, very exciting. I had a fellowship from the Norwegian Research Council,
which also could support me beyond my Ph.D. in 1971, and I wanted to
go to Brandeis to work with Maurice. When I finally had the courage to
ask him if this would be possible, he said that he had been thinking about
the same thing, but he was not interested if I did not have the courage and
initiative to ask. This was the start of a collaboration which lasted until
Maurice’s death, and which produced about 40 papers, some with additional
coauthors. Maurice viewed the semester in Urbana as the start of his work
on representation theory, as indicated by what he wrote to me:

(March 22, 74) It was really nice being back in Urbana, the place
where all of this mathematics started.

1 shall here give a survey of some of the main parts of our joint work,
in an expanded version of my lecture at the Maurice Auslander Memorial
Conference. The organization is according to topics, usually in the order in
which the work started. No attempt is made to review the contributions of
others on these topics, and the list of references is restricted to cover my work
with Maurice. In connection with almost split sequences and irreducible maps
I will give some citations from letters to show the way Maurice viewed our
work and how he was concerned about the reactions of others.

In most of the topics there are strong ties to Maurice’s earlier work.
Throughout he kept his interest in homological algebra, including functor-
ial approaches. He was always interested in impact on commutative ring
theory, or more generally higher dimensional noncommutative ring theory,
even though the representation theory of artin algebras is the main theme
during this period.

Mostly A will be an artin algebra over a commutative artin ring R, for
example a finite dimensional algebra over a field k, and mod A will denote the
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category of finitely generated (left) A-modules. Relevant examples to keep
in mind are group algebras kG where G is a finite group, finite dimensional
factor algebras of the polynomial ring k[ X, ... , X,;] and matrix algebras like

<IIIE g g). More generally we have factor algebras of path algebras of quivers,

8
for example A = kI'/I where T is the quiver -3-" | and I is the ideal

generated by fa. Denote by D the ordinary duality .between mod A and
mod A°®, which for a k-algebra is Homg( , k), and by Tr the transpose which
we define below.

1 Stable equivalence

After spending the fall of 1970 in Urbana, Maurice went to Europe for the
spring of 1971. Especially his conversations with J. A. Green and P. Gabriel
were to influence our work when we met again at Brandeis in the fall of 1971
and our real collaboration began.

Maurice had been interested in the module category modulo projectives
modA. This category is the natural domain of definition for the functors
Ext}( ,C) where C is in mod A and i > 0, and for his favourite functor, the
transpose Tr. Recall that if P, — Py — C — 0 is a projective presentation of
C in mod A (for a noetherian ring A), then TrC is defined up to projective
summands by the exact sequence 0 — C* — F§ — Py — TrC — 0, where
X* = Homa(X,A). For artin algebras we usually define TrC by using a
minimal projective presentation for C'. Then Tr does not in general give rise to
a functor from mod A to mod A°P, but there is a duality Tr : modA — modA°P.
Maurice had first used the transpose many years earlier in the context of
regular local rings and also for noncommutative noetherian rings in work
with Bridger.

Two artin algebras A and A’ are stably equivalent if the categories modulo
projectives modA and modA’ are equivalent. The algebras A and A’ may
be very different from a homological point of view even if they are stably
equivalent, but it is easy to see that A is of finite representation type if and
only if A’ is.

From J. A. Green Maurice had learned about interesting instances of stable
equivalences occuring for group algebras, induced by Green correspondence.
On the other hand Gabriel had told Maurice about his classification of the
quivers where the category of representations has only a finite number of
indecomposable objects up to isomorphism, in terms of Dynkin diagrams.
For an algebraically closed field k this took care of the classification of the
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hereditary algebras and radical squared zero k-algebras of finite representation
type, that is, having only a finite number of indecomposable modules up to
isomorphism. When rZ = 0 for A, where r denotes the radical, there is an
associated quiver, called the separated quiver of A, which is a disjoint union of
Dynkin quivers if and only if A is of finite representation type. For example

if A = {(ggg) ;a,a,b,¢,d in k}, the ordinary quiver is Q*. and the

separated quiver is { , where the path algebra also has radical square

zero (see [1]). We discovered that this gave other interesting examples of
stable equivalences. In particular we were led to the following [2].

Proposition 1.1 An artin algebra A with r? = 0 is stably equivalent to the

hereditary algebra A' = (Aéz A(/)E)’

For example A = k[X,Y]/(X,Y)? and A’ = ( - 2) are stably equivalent.
In particular this shows that one algebra can have global dimension one and
the other infinite global dimension when the algebras are stably equivalent,
in strong contrast to Morita equivalence.

More generally, the following was our first joint main result [2].

Theorem 1.2 An artin algebra A is stably equivalent to a hereditary artin
algebra if and only if A satisfies the following conditions:

(i) Each indecomposable submodule of a projective module is simple or
projective.

(i) If S is a simple nonprojective submodule of a projective module, then
S is a factor of an injective module.

The method we used in our work on stable equivalence, and in particular
for proving this theorem, was functor categories. One drawback about the ad-
ditive category modA is that it is not an abelian category. If A is of finite rep-
resentation type and M is the direct sum of one copy of each indecomposable
object in mod A up to isomorphism, we consider the algebra I' = End, (M)°P.
Then modA is equivalent to the category of projective objects in mod I', which
is not only an abelian category, but in this case even a module category for an
artin algebra. When A is not of finite representation type, this point of view
leads to the investigation of functor categories. Here we used and developed
further Maurice’s earlier work on finitely presented functors. In general the
stable category modA is equivalent to the projective objects in the category
C of finitely presented contravariant functors from mod A to abelian groups
which vanish on projective objects. This means that the functors F in C are

associated with short exact sequences 0 — A LBL&Cc o0 giving rise to
an exact sequence of functors 0 — ( , A) ) (,B) g (,C) = F — 0 with
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F in C. An important feature is that C has enough projective and injective
objects and that both have a nice description, as Hom( ,C) and Ext}( ,C)
respectively, for C in mod A. We gave an explicit description of minimal
projective presentations and minimal injective copresentations, which made
it possible to describe when functors in C have low projective dimension. For
example pd Ext)( ,C) < 1 if and only if C is a submodule of a projective
module. Such results provide information on stable equivalence since when
A and A’ are stably equivalent, the associated functor categories C and C’ are
equivalent categories. Hence projective dimension is preserved. As a conse-
quence we could obtain results used for example to prove Theorem 1.2. As
an illustration we cite the following [2].

Proposition 1.3 Let A and A’ be stably equivalent artin algebras.

(a) A has no nonzero projective injective modules if and only if A’ has no
nonzero projective injective modules.

(b) A is 1-Gorenstein (i.e. the injective envelope of A is projective) if and
only if A’ is 1-Gorenstein.

I presented these results from our joint work at the Ohio Conference celebrat-
ing the 60** birthday of Zassenhaus in the spring of 1972. Our methods and
results were later exploited further by Martinez. For example a central prob-
lem, pushed amongst others by Alperin, was the following: Do stably equiv-
alent artin algebras have the same number of nonprojective simple modules
up to isomorphism? The main interest was for selfinjective algebras, in par-
ticular group algebras. Maurice and I proved it in the “opposite” situation,
where one of the algebras has no nonzero projective injective modules and
also for algebras stably equivalent to hereditary algebras [2]. Later Martinez
has shown that it is sufficient to treat the selfinjective algebras, and he has
proved the conjecture for finite representation type.

We kept throughout our collaboration an interest in stable equivalence,
and worked occasionally on the above conjecture, without success. We also
got back to theoretical work on stable equivalence in connection with almost
split sequences and irreducible maps [15, 16]. For example we proved the
following, which later turned out to be of interest in connection with trian-
gulated categories [16].

Proposition 1.4 Let F : modA — modA’ be an equivalence where A and
A’ are selfinjective algebras with no ring summand with radical square zero.
Then F commutes with the first syzygy operator Q1.

We also returned to questions about stable equivalence in our investigation
of uniserial functors [20]. In particular we siudied algebras stably equivalent
to Nakayama algebras and biserial algebras.
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2 Almost split sequences

During my stay at Brandeis 1971-73 we also started our work on almost split
sequences, including proving existence and uniqueness of such sequences for
artin algebras. I here give the basic definitions and discuss some of the main
points. Also I include several citations from letters written by Maurice in
order to give some idea about how he viewed the work, and how he thought
others reacted to it.

For an artin algebra A an exact sequence 0 — A 4 B4 C—0inmodA
is said to be almost split if

(i) it does not split.

(ii) A and C are indecomposable and

(iii) given h : X — C where X is indecomposable and % is not an isomor-
phism, then there is some ¢ : X — B such that gt = h.

Our main basic result was the following (8].

Theorem 2.1 Let A be an artin algebra.

(a) Let C be an indecomposable nonprojective object in mod A. Then there
15 an almost split sequence 0 — A — B — C — 0, which is unique up to
isomorphism, and we have A~ DTr C.

(b) Let A be an indecomposable noninjective object in mod A. Then there
is an almost split sequence 0 - A — B — C — 0, which is unique up to
1somorphism, and we have C ~ Tr DA.

Like for stable equivalence, the inspiration came from the functorial point
of view. The question whether an almost split sequence exists for a given
indecomposable module C' (without considering the relationship between the
end terms) essentially expresses, as is easily seen, that the simple contravari-
ant functors F' from mod A to abelian groups are finitely presented, that is
there is an exact sequence of functors ( ,B) — ( ,C) = F — 0 with B and
C in mod A. When A is of finite representation type, this is obvious since the
category of finitely presented contravariant functors from mod A to abelian
groups is then just modT for an artin algebra I'. So the starting point was
here whether this property of simple functors, obviously true for finite repre-
sentation type, holds for artin algebras in general. Part of Maurice’s general
philosophy and the reason for his interest in finite representation type was
that he viewed the class as a test case for what might be true in general.

We had two different approaches to proving the existence of almost split
sequences for artin algebras. One was in line with the motivation discussed
above, which we formulated more generally in the context of what we called
dualizing R-varieties over a commutative artin ring R. Recall that a skeletally
small additive R-category C where idempotents split and each Hom(C, C") is
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a finitely generated R-module is a dualizing R-variety if there is a duality be-
tween the category of finitely presented contravariant and finitely presented
covariant functors from C to mod R. This notion was motivated by the impor-
tant role played by functor categories in the study of artin algebras and the
fact that we could prove that the ordinary duality D : mod A — mod A°P ex-
tends to a duality between the finitely presented contravariant and covariant
functors from mod A to mod R. Examples of dualizing R-varieties are mod A
and the category of finitely generated projective A-modules, for an artin al-
gebra A, and categories appearing in covering theory for finite dimensional
algebras. A way of constructing new examples is based upon the following
basic result [3].

Theorem 2.2 If C is a dualizing R-variety, then the category modC of fi-
nitely presented contravariant functors from C to mod R is again a dualizing
R-variety.

In the series of papers [4, 5, 6, 7] we generalized results from artin algebras
to dualizing R-varieties, and studied stable equivalence in this context. In
particular we extended the results on algebras stably equivalent to heredi-
tary algebras. Our functorial proof of the existence of almost split sequences
was done more generally in the context of modC when C is a dualizing R-
variety [3]. Maurice and I also returned recently to work involving dualizing
R-varieties, to be discussed in the next section.

The other proof for the existence of almost split sequences was based
on a guess of what the relationship should be between the end terms of an
almost split sequence, assuming almost split sequences existed. A good test
case was the class of group algebras of finite representation type, where the
structure of the indecomposable modules was known by work of Kupisch and
Janusz. We observed that if 0 = A - B — C — 0 is almost split, then
A is isomorphic to Q2C, the second syzygy module of C. This could clearly
not be the answer in general, since 22C need not be indecomposable. On the
other hand computations for k[X,Y]/(X,Y)? with k a field indicated that
the answer should be A = DTr C| where D is the ordinary duality and Tr
the transpose. And indeed, we were able to prove the following, which also
gives a useful simple way for testing whether a given exact sequence is almost
split [8].

Theorem 2.3 Let C be an indecomposable nonprojective object in mod A for
an artin algebra A.

(a) Ext} (C, D Tr C) is an indecomposable injective End(C)-module both as
a right and left module, and any nonzero element of the simple socle represents
an almost split sequence.
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(b) Let0 - DT C LBSC0bea nonsplit exact sequence in mod A.
Then the sequence is almost split if for each map h : C — C which is not an
isomorphism there is some s : C — B with gs = h.

Underlying the existence proof in [8] is the following formula, which has
analogues in other contexts where a corresponding formula has been used to
prove existence of almost split sequences.

Theorem 2.4 Let A and C be in mod A for an artin algebra A. Then we
have an isomorphism D Ext'(C, D Tr A) ~ Hom(A, C) which is functorial in
both variables.

Maurice and I spent the fall of 1973 at MIT, and during this time we fin-
ished our series of papers on dualizing R-varieties in the Advances in Math-
ematics. This writing process was at the same time part of a therapy for
Maurice, who was having problems with his memory after an almost fatal
accident in Argentina during the preceeding summer. Maurice had already
written two papers in the Communications in Algebra, containing amongst
other things his proof of Brauer-Thrall 1. Our paper with the second ap-
proach to almost split sequences became part 111, and we finished this paper
right before the International Conference on Representations of algebras in
Ottawa 1974.

While writing up the basic work on almost split sequences we started
investigating the maps f : A — B and g : B — C occuring in an almost split
sequence 0 — A 4, B % C - 0. This gave rise to what we called irreducible
maps. A map h : X — Y is irreducible if h is neither a split monomorphism
nor a split epimorphism, and given a commutative diagram

7N

with A = ts, then s is a split monomorpliism or ¢ is a split epimorphism. The
basic connection with almost split sequences is the following [14].

X

Y

Theorem 2.5 Let C be an indecomposable nonprojective module over an
artin algebra A. Then a map b’ : B' — C is irreducible if and only if there
is a nonzero map h” : B" — C such that there is an almost split sequence

0— A— BB "¢ So.

Our basic work on irreducible maps, and their relationship to almost split
sequences, was dealt with in another three papers in the Communications in
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Algebra [14, 15, 16]. The writing process was long, due to new developments,
changes in points of view and attempts of improvements in the presentation.
These papers did not contain very many applications outside the topics of
almost split sequences and irreducible maps. But some of the internal com-
putations we made turned out to be useful for applications of the theory. As
examples we cite the following [8].

Proposition 2.6 0 = A — B — C — 0 be an almost split sequence over an
artin algebra A.

(a) B is projective if and only if A is a simple submodule of a projective
module which is not a composition factor of rl/soc I for any injective module
I.

(b) B has an indecomposable projective injective summand P if and only
if the almost split sequence is isomorphic to the sequence 0 — rP — P 1I
rP/soc P — P/soc P — 0.

Already while we were working on the basic theory, Maurice applied our
results to give an alternative approach to the representation theory of hered-
itary algebras, in joint work with Platzeck. Also our theory was suited for
proving existence of an infinite number of indecomposable modules with a
certain property, by constructing chains of irreducible maps. For example,
we proved the following [17].

Proposition 2.7 Let A be an indecomposable weakly symmetric artin algebra
(that is, P/rP = soc P for each indecomposable projective A-module P) of
infinite representation type. '

If there is one indecomposable Q-periodic module, then there is an infinite
number up to isomorphism.

There were also applications to stable equivalence, and one was already
mentioned in the previous section. Also stable equivalences could be used to
construct new almost split sequences from old ones [15].

We also mention the following curious property of irreducible maps {14].

Proposition 2.8 Let 0 — A LBSC50bea nonsplit exact sequence in
modA. Then f: A — B is irreducible if and only if the map g : B — C has
the property that given any map h : X — C there is either a mapt: X — B
such that gt = h or a map s : B — X such that hs = g.

On the level of contravariant functors from mod A to abelian groups this
expresses that for the representable functor ( , C) the subfunctor F' = Im( , g)
has the property that for any subfunctor H = ( ,C) we have either FF C H
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or H C F. A subfunctor of a functor, or a submodule of a module with such
property is called a waist, in joint work with E. L. Green [11, 12].

Maurice was excited about the work on almost split sequences and ir-
reducible maps from the beginning, but realized that it could be hard to
convince others to take it seriously. At conferences he was more inclined to
lecture on newer things, even if there was less chance of the material being
accepted. For example in connection with discussing what we should lecture
about at the 1974 Ottawa meeting he wrote the following, where the first
part refers to the work on almost split sequences.

(March 3, 1974) If you think this is a good idea, I would suggest
either an exposition of the material in our notes perhaps enhanced
by what we succeed in getting before then or else a good exposition
of the stuff on stable equivalence, something that is really impossi-
ble to accomplish in an hour. Of course the stable equivalence stuff
is safer since it is done and I’d be perfectly happy to talk about
it. Or I’'m perfectly happy to try the other course if you are game
even though it’s a little more risky... The other could be “Almost
splitable sequences”.

Not surprisingly we ended up with the “risky” choice.
At the same time Maurice was pleased about some positive reactions to
our work, during the spring of 1974, as the following citations show.

(March 22, 1974) Reiner also claimed that the whole thing is begin-
ning, just beginning I fear, to make sense to him. At Northwest-
ern Matlis seemed to be taking e genuine interest. At Chicago,
MacLane and Alperin both seemed to like the work, especially
Alperin who really seems to be developing a genuine interest.

Maurice was interested in finding connections in mathematics, but even
for him there were limits for what he thought could be connected, and here
he was also often right.

(March 22, 74) Szpiro came to Urbana while I was there and it was
nice seeing him again. Peskine and he still feel I am doing this
work in order to get at the Tor conjecture. I told him this was not
the case, but I don’t think I convinced him. I guess it would really
be funny iof I went back to that problem and solved it, especially if
some of these ideas were involved. But I don’t think things will
work out that way.
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In general Maurice was also concerned about how the material was pre-
sented, and especially in connection with the work on almost split sequences
and irreducible maps, which he found mysterious, and assumed would look
even more mysterious to others.

(Aug. 12, 1975) Hope to be back at work next week, including the
manuscripts IV and V. Part of the problem is that I am dissatis-
fied, not so much with what you have written, but with the fact that
almost split sequences still remain such a mystery. In particular
I’'m annoyed that no better proof of their existence has appeared.
But I'm convinced now that that will have to wait.

(Sept. 10, 75) In its present form I find it quite startling and un-
expected. It should have some interesting applications eventually,
but I've not found any as yet. This isn’t too surprising since the
whole thing is so new. Do you see what to do with it. The subject
seems to have no end of unexpected results.

(Sept. 12, 1975) I did not include the functorial material in my
revised IV since it wasn’t necessary and might frighten people off
from looking at the rest of the material. You developed, worked
with and have generally lived with these techniques for a long time
so to you they are routine calculations, but to some one seeing
them for the first time I'm afraid the whole thing will be an in-
comprehensible mystery. The subject ts already mysterious enough
to everyone without being added by hasty writing.

As apparent from the citations, Maurice was not completely happy about
the original existence proofs. His favourite proof, which is the one given in
the book [39], is based on the following property of D Tr.

Proposition 2.9 Let0 — A 4 B4 C = 0 be an ezact sequence in mod A,
where A is an artin algebra, and let X be in mod A. Then any maps: X — C
factors through g : B — C if and only if any map t : A — DTr X factors
through f : A — B.

This property is based on the following formula which Maurice was very
fond of, and which was the basis of our study of indecomposable modules
determined by their composition factors, via the concept of short chain [21].

Proposition 2.10 Let A and B be in mod A for an artin R-algebra A, and
let P, = Py — A — 0 be a minimal projective presentation of A. Denoting
the length of Homa(X,Y) as an R-module by (X,Y) we have the formula

(A,B) — (B,DTr A) = (P, B) — (P,, B).
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The notion of an indecomposable module B being the middle of a short
chain, which we defined to mean that there is some indecomposable module
A with (A,B) # 0 and (B,DTr A) # 0 was suggested to us by this for-
mula. We gave an application to the problem when indecomposable modules
are determined by their composition factors [21]. This result has later been
improved.

Proposition 2.11 If A end B are indecomposable modules over an artin
algebra A which are not the middle of a short chain, then A and B are iso-
morphic if they have the same composition factors including multiplicity.

In order to make almost split sequences more interesting to people working
in other parts of algebra, Maurice was often working on existence proofs in
various contexts, like group representation theory or commutative algebra,
using terminology and properties familiar to practitioners in these areas.

Since an almost split sequence 0 - A — B — (' — 0 is uniquely de-
termined by the module C up to isomorphism, for example the number of
summands in a direct sum decomposition of B in indecomposable modules is
an invariant of C, usually called a(C). And B(C') denotes the number of the
summands which are not projective. These invariants give information on
the AR-quiver (Auslander-Reiten quiver), which is a quiver associated with
an artin algebra based on the information provided by almost split sequences
and irreducible maps. We investigated o(C) in [19], and obtained further
information on these invariants through our study of uniserial functors [20].
For example we showed that if A is of finite representation type and 5(C) < 2
for all indecomposable nonprojective modules C, then A is biserial, that is if
P is indecomposable projective and not uniserial then either ¢ P or r.P/ soc P
is a direct sum of two uniserial modules. In particular this gave necessary
conditions for an algebra to be stably equivalent to a Nakayama algebra.

Already in the mid seventies Maurice extended our existence theorem for
almost split sequences over artin algebras to a much more general higher di-
mensional setting, containing (maximal) Cohen-Macaulay modules over com-
plete local commutative Cohen-Macaulay rings. The left end of an almost
split sequence could be expressed in terms of the right end by an operation =
analogous to D Tr for artin algebras. Maurice was very excited about this de-
velopment, and he wrote the following, before having the most general setting
and an analogue of D Tr.

(July 16, 1975) It is really amazing how connecied mathematics is.
I never thought that the work on artin algebras of finite represen-
tation type would lead to results about complete noetherian local
rings in general. I find the situation very interesting and exciting.
If an analogue existed for the dual of the transpose, it would be
most interesting.
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Maurice kept his interest in almost split sequences to his last days. He
was looking for more basic properties, and he obtained some curious results
on homological properties of almost split sequences which he was working on
writing up when he died.

3 Commutative rings

Even though Maurice’s general existence theorem for almost split sequences
was available in the mid seventies, it was not until around 1983 that he found
his important and influential applications to (maximal) Cohen-Macaulay mod-
ules over commutativerings and singularity theory. Also in the general setting
there is the concept of finite representation type, which in the commutative
case expresses that there is only a finite number of indecomposable (maximal)
Cohen-Macaulay modules up to isomorphism. In addition there is an asso-
ciated AR-quiver, and Maurice discovered an interesting connection between
the AR-quivers of two-dimensional invariant rings k[[X,Y]]® where G is a
finite subgroup of SL(2, k), for an algebraically closed field k of characteristic
zero, and the resolution graph of the corresponding isolated singularity. Mau-
rice’s work went via the associated McKay quiver, and through this also the
Dynkin and extended Dynkin diagrams appeared again. An important fea-
ture is that the operation T expressing the left end of an almost split sequence
in terms of the right end is the identity in this setting. This work opened
up a new area of research, and most of my work with Maurice in the follow-
ing years dealt with commutative ring theory, and also higher dimensional
noncommutative ring theory, inspired by this connection.

When the characteristic of the field is zero, the invariant rings k[[X,Y]]¢
with G a finite subgroup of SL(2,k) are exactly the two-dimensional com-
mutative Gorenstein rings (which are complete local with residue field k) of
finite representation type, that is having only a finite number of indecompos-
able (maximal) Cohen-Macaulay modules up to isomorphism. The inclusion
G C SL(2,k) determines a representation of G over k, which again deter-
mines a quiver, called the McKay quiver, whose vertices correspond to the
irreducible representations of G over k. It was observed by McKay that these
quivers are of the form A, obtained from an extended Dynkin diagram A
by replacing each edge - — - by a pair of arrows - 2 -. McKay further ob-
served that deleting the vertex corresponding to the trivial representation k
we have Ay where Ag is a Dynkin diagram, and is the resolution graph of
the corresponding isolated singularity. From the isomorphism between the
AR-quiver for k[[X, Y]] and the McKay quiver it follows that the AR-quiver
is also A where A is extended Dynkin. When the vertex corresponding to
the ring is deleted, the AR-quiver is Ao where A, is the Dynkin diagram
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of the isolated singularity. In arbitrary characteristic the Gorenstein rings
of finite representation type are the rational double points, and the corre-
sponding resolution graphs are still Dynkin. Artin and Verdier had already
established a direct connection between the indecomposable nonprojective
(maximal) Cohen-Macaulay modules and the edges of the singularity graph.
In [24] we proved the following.

Theorem 3.1 Let A be a rational double point over an algebraically closed
field k. Then the AR-quiver of A is of the form A where A is an extended
Dynkin diagram and of the form Aq with Ao Dynkin if the vertex correspond-
ing to A is deleted.

Using amongst other things this result, Esnault and Knorrer found a direct
connection between the resolution graph and the AR-quiver with the vertex
corresponding to the ring deleted.

For an algebraically closed field k, the complete local commutative two-
dimensional Cohen-Macaulay rings A (with residue field k) of finite repre-
sentation type are exactly the invariant rings k[[X,Y]]® where G is a finite
subgroup of GL(2,%). One problem was to find commutative rings of finite
representation type in dimension greater than two when the ring was not a
hypersurface. The hypersurface case in characteristic different from two had
been dealt with, and the characteristic two case was completed later. We
found two such examples, each of them being the only one of finite represen-
tation type in a class to which it naturally belongs [25].

Theorem 3.2 Let k be an algebraically closed field and G a finite subgroup
of GL(n, k) for some n > 3. Then the invariant ring k[[X1,... , X,]] is of

finite representation type if and only if n =3 and G = <(_gl —21 81 ) >
Recall that a scroll of type (nq,... ,n,) is a factor of the power series ring
k[[X((,l), XD .Xc(,"), ..+, X{M]] modulo the ideal generated by the de-
xO .. szll)—l - ‘Xg') Xf»rr)—1)
xM . x® x0 . x§

terminants of the 2 x 2 minors of the matrix (

It is then known that dim A = ¢+ 1.

Theorem 3.3 Let A be a scroll of type (ny,... ,ng) witht > 2. Then A is of
finite representation type if and only if it is of type (2,1).

For proving finite representation type we used a criterion based on the
existence of almost split sequences, but which is not a formal consequence of
the existence. Such a criterion was proved by Maurice for artin algebras and
had already been an important method for proving finite representation type
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in that setting. It essentially amounts to making a guess for a finite set of
indecomposable objects which are believed to be all and then show that one
can build almost split sequences for these modules just using the modules
from the finite set [25].

For the invariant rings we also gave an alternative proof for finite rep-
resentation type without using almost split sequences. In proving infinite
representation type we were able to reduce the problem to showing that cer-
tain artin algebras with radical square zero are of infinite representation type,
for which there is a nice criterion as discussed in section 1. This represented
a different type of connection with artin algebras.

These new rings of finite representation type we found around 1984. After
hearing about the example of the invariant ring, Eisenbud suggested during
my stay at Brandeis to look at the class of scrolls. We tried for a while to
prove that all or more of them were of finite representation type, but finally
started suspecting that they were no more.

Maurice had proved that almost split sequences exist in the category of
(maximal) Cohen-Macaulay modules for A if and only if A is an isolated
singularity. Inspired by a question of Schreyer in 1985 we proved the following
local version of this result [28].

Theorem 3.4 Let R be a complete local commutative Gorenstein ring and
A an R-algebra which is a finitely generated (mazimal) Cohen-Macaulay R-
module. Let C be indecomposable nonprojective in the category CM(A) of
A-modules which are (mazimal) Cohen-Macaulay modules over R.

Then there is an almost split sequence 0 > A - B — C — 0 in CM(A)
if and only if C, is a free R,-module for each mazimal prime ideal p in R.

We also investigated existence of almost split sequences for graded Cohen-
Macaulay modules over graded Cohen-Macaulay rings, partially motivated by
a possible application to existence of almost split sequences for vector bundles
and coherent sheaves. We first dealt with the twodimensional case [26]. We
obtained a local version also in the Z-graded case [27].

Theorem 3.5 Let R = k[Xy,...,X4] be a polynomial ring over a field k
together with a Z-grading such that the degrees of the X; are at least one and
the constants have degree zero. Let S be a Z-graded R-algebra which is a
finitely generated projective R-module, and denote by CM(grS)o the category
whose objects are the finitely generated graded S-modules which are projec-
tive R-modules and where the morphisms are of degree zero. Let C be an
indecomposable projective in CM(grS)o.

Then there is an almost split sequence 0 - A — B — C — 0 in CM(grS)o
if and only if C, is is Ap-projective for each nonmazimal prime ideal p in R.
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In particular we have the following consequence.

Corollary 3.6 Almost split sequences exist for vector bundles and for coher-
ent sheaves on nonsingular projective curves.

The method of proof was based on a graded version of the formula
D Ext'(C,7B) 5 Hom(B, C). In fact, this is an analogue of the Serre duality
formula, which alternatively can be used directly to prove existence of almost
split sequences for nonsingular projective curves, as done in the independent
approach by Schofield.

A graded R-algebra S as above is said to be of finite graded representation
type if there is only a finite number of indecomposable graded (maximal)
Cohen-Macaulay S-modules up to shift. We imitiated the theory further,
in establishing similar criteria for proving finite graded representation type.
These criteria were applied it to the graded scroll of type (2,1) in [25] and
to the graded invariant ring S = k[X;, X3, X3]¢ by Solberg. These results
indicated that there was a connection between graded finite representation
type for a graded ring S, and finite representation type for the completion A =
S with respect to (Xj,...,Xy), and also between the almost split sequences
for S and A = S. In an effort to explain these features, we were able to prove
the following [27].

Theorem 3.7 Let k be a field, R = k[X1,...,X,] and S a Z-graded R-
algebra, which is finitely generated projective as a R-module.

(a) If0 > A —> B — C — 0 is an almost split sequence in the category
CM(grS)o, then the induced sequence 0 —» A — B — C — 0 obtained by
completing with respect to (Xi,...,X,) is an almost split sequence in CM(§)

(b) S is of finite graded representation type if and only if S is of finite
representation type.

There are also existence theorems for S being graded by more general
groups, and then the almost split sequence may go to a direct sum of almost
split sequences via completion [33].

There is an interesting connection between rational double points R for
an algebraically closed field &£ and finite dimensional k-algebras. For if M
denotes a direct sum of one copy of each indecomposable object in the cate-
gory of (maximal) Cohen-Macaulay modules CM(R), then the endomorphism
algebra I' = End(M)°® is finite dimensional over k since R is an isolated sin-
gularity. And using the shape of the AR-quiver one can prove that I' is the
preprojective algebra II of the corresponding Dynkin diagram A. Recall that
II is the path algebra of A over k modulo the ideal generated by the elements
r; for each vertex in A, defined by r; = 3°, a*«, where a runs through the ar-
rows starting at ¢ and o* is the arrow obtained from « by changing direction.
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Note that as for artin algebras the stable category CM(R) is equivalent to the
category of projective modules in modT'. In [40] we applied this connection
to study the module theory of the preprojective algebra of a Dynkin diagram.
We were able to use the fact that for R the correspondence  between the
end terms of an almost split sequence is the identity and that the functor
0 : modR — modR is isomorphic to the identity to show the following,
proved by Ringel and Schofield using different methods [40].

Proposition 3.8 Let I' be the preprojective algebra of a Dynkin diagram.
Then for each indecomposable nonprojective module in modT' we have

(DTr)fC ~ C.

Most of the preprojective algebras are of wild representation type. In
fact, applying the same method to commutative rings of dimension one we
obtained the following [40].

Proposition 3.9 There is a one-dimensional Gorenstein ring R of finite rep-
resentation type such that if M is the direct sum of one copy of each indecom-
posable module in CM(R), then I' = End(M)*® is a finite dimensional wild
algebra where (D Tr)*C ~ C for each indecomposable nonprojective module
C in modT.

Our work in [40] was formulated in a more general setting, dealing with
functor categories in a similar way as we discussed for artin algebras in sec--
tion 1. An interesting feature is that when R is an isolated singularity where
almost split sequences exist, then CM(R) is a dualizing R-variety, by a slight
extension of the definition, allowing R to be a noetherian ring [40]. In fact it
is the analogue of the formula in Theorem 2.4 which is used to prove existence
of almost split sequences, that essentially expresses the fact that CM(R) is a
dualizing R-variety. Then it makes sense to talk about almost split sequences
in the category of finitely presented contravariant functors from CM(R) to
abelian groups.

We also worked on Grothendieck groups (with relations given by all exact

sequences), in particular for the invariant rings A = k[[X1, ... , X,]]° when
G is a finite subgroup of GL(n, k). Our method was to use the skew group
ring k[[X1,...,X»]]G and long exact sequences of K-groups. I state one of

our results, but not in complete generality [22, 31].

Theorem 3.10 Let Y~ be a complete regular local domain and G a finite
group acting on Y as ring automorphisms such that the order of G is invertible
in Y. Then the Grothendieck group Ko(mod Y C) is isomorphic to Z ® H
where H is a finite group.
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There is an interesting connection between Grothendieck groups and al-
most split sequences, and for finite representation type it is actually possible
to compute the Grothendieck group from the AR-quiver [22]. This is based
upon a generalization of a result by Butler for artin algebras.

4 Tilting theory

Bernstein, Gelfand and Ponomarev gave in the early seventies a different ap-
proach to the theorem of Gabriel classifying the quivers for which there is
only a finite number of indecomposable representations up to isomorphism
over a field k. They used certain reflection functors, defined from the cate-
gory of representations of a quiver without oriented cycles to the category of
representations of a related quiver. This was generalized to representations

of species by Dlab and Ringel.
1

Yo
For example if we have the quiver 2 ., and fix the vertex 4, let I"
37 P 7y
1 Vi
. Yo ) Vfa ‘
be the quiver 2 . To a representation v g, of I' we associate
3 ﬂ'y’ 4 v ..'p vy
Vi
Va
the representation V2 . of I, where f, : Vj — V; is determined by
vy

the exact sequence 0 — V) 2 Va £t i.

Since the reflection functors were important for hereditary algebras we
hoped that similar functors would be useful more generally. We started by
trying to understand the reflection functor from a module theoretic point
of view, together with Platzeck, during our stay at Brandeis 1976-77. We
proved the following first module theoretic version of what is now called tilting
theory [18].

Theorem 4.1 Let A be a basic artin algebra with a simple projective nonin-
Jective module S. Write A= SII P and let T = P I1 Tr D(S).

(a) The functor Homy(T, ) : mod A — mod Ends(T)? is a fully faithful
functor when restricted to the full subcategory mods A of mod A whose objects
do not have S as a summand.

(b) If in addition Homa(Tr DS,A) = 0, then S’ = Ext}(T, S) is a simple
injective End(T)°P-module and Homy (T, ) induces an equivalence
Homy (T, ) : mods A — modg End, (T)°P.
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This work was also inspired by almost split sequences. Actually the al-
most split sequence 0 — 5 — E — TrDS — 0 played an essential role.
But it has later turned out that one does not need almost split sequences
here. Shortly after finishing the work we had the chance to present it at the
1977 Oberwolfach meeting. The work created some interest and was further
generalized and developed into what is now called tilting theory, which plays
a central role in the representation theory of artin algebras.

A tilting A-module T is a A-module satisfying the following:

(i) pdpa T < 1 (where pd, T denotes the projective dimension of T').

(ii) Ext} (T, T) =0

(iii) There is an exact sequence 0 — A — To — 17 — 0 with Ty and Ty
in add T, that is Ty and T; are direct summands of the direct sum of a finite
number of copies of T'.

The module T' = P II Tr DS in Theorem 4.1 is an example of a tilting
module, and is in the literature sometimes called an AP R-tilting module.

Our second main contribution to tilting theory came in the late eighties,
after the notion of tilting, and the dual notion of cotilting, module had been
generalized further.

A A-module T is a (generalized) tilting module if

() pdp T <

(ii) ExtA*(T,T) = 0 for all i > 0.

(ii1) there is an exact sequence 0 — A --» Tp — --- — T,, — 0 with each
T;in add T.

Dually T’ is a (generalized) cotilting module if D(T”) is a tilting A°P-
module.

In [34, 37] we proved a connection between (generalized) cotilting mod-
ules and certain contravariantly finite subcategories of mod A. The theory of
contravariantly (and covariantly) finite subcategories goes back to Maurice’s
work with Smalg. We recall that a subcategory C of mod A, closed under
isomorphisms and summands, is contravariantly finite if for each X in mod A
there is some map f : C' — X with C in C, such that for any map g : ' = X
with C' in C there is some h : C' — C such that fh = g. The dual no-
tion is that C is covariantly finite. Further we recall that C is resolving if it
contains all projective modules and is closed under extensions and kernels of
epimorphisms. Finally, for a full subcategory C of mod A denote by C the full
subcategory of mod A whose objects are the X for which there is an exact
sequence 0 = C, = - = (Cy = Co — X — 0.

Theorem 4.2 Let A be an artin algebra and let X be a full subcategory of
mod A.

(a) If X is a contravariantly finite resolving subcategory of mod A with
X =mod A, then T is a cotilting module if add T is the Ext-projectives in X.
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(b) If T is a cotilting module, then X1 = {C; Extp'(C,T) = 0; > O} is a

contravariantly finite resolving subcategory of mod A with X7 = modA.

The above correspondence is especially nice for algebras of finite global
dimension, since X = mod A is then automatically satisfied for a resolving
subcategory X’ of mod A. Then we get a one-one correspondence between
contravariantly finite subcategories and (basic) cotilting modules. A beautiful
illustration was made by Ringel for quasihereditary algebras, and there were
further applications to algebraic groups and quantum tilting.

When T is a cotilting module with idpT < 1, where id,T denotes the
injective dimension of T, then the above category X7 is Sub T, that is the
objects are submodules of finite direct sums of copies of T'. Already in Mau-
rice’s work with Smalg a connection between the subcategories of the form
Sub T and classical cotilting modules was observed. Our work was to a large
extent also inspired by Maurice’s work on Cohen-Macaulay approximations
with Buchweitz. In this case the dualizing module for a Cohen-Macaulay ring
plays the role of a cotilting module, and also has analogous properties [34].
This connection motivated a study of a class of artin algebras which we called
Cohen-Macaulay algebras [35).

5 Contravariantly finite subcategories and
syzygies

We saw in the previous section there that is an interesting connection be-
tween contravariantly finite subcategories of mod A and cotilting modules for
an artin algebra A. The contravariantly finite subcategories are also impor-
tant in connection with almost split sequences, since Maurice had shown in
joint work with Smalg that subcategories (closed under isomorphisms and
summands) which are both contravariantly and covariantly finite and closed
under extensions have almost split sequences. These facts motivate investigat-
ing general properties of contravariantly (or covariantly) finite subcategories
and procedures for constructing such subcategories. It is then also important
to find examples of contravariantly and/or covariantly finite subcategories
which are in addition resolving (or coresolving), or at least extension closed.
We worked on such questions since the late eighties, and we were here also
influenced by Maurice’s earlier work on commutative and noncommutative
ring theory, in particular by his work with Bridger.

The following gives a way of constructing covariantly finite subcategories
from contravariantly finite ones and conversely [34].
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Theorem 5.1 Let X be a contravariantly finite extension closed subcategory
of mod A for an artin algebra A.

(a) Then Y = {C;Ext'(X,C) = 0} is covariantly finite extension closed
and contains the injectives, and (Z = {C;Ext'(C,Y) = 0} is contravariantly
finite, extension closed and contains the projectives.

(b) If X contains the projectives, then Z = X.

The contravariantly finite subcategories of mod A which are in addition
resolving are “finitely generated” in the following sense.

Theorem 5.2 Let X be a contravariantly finite resolving subcategory of mod A
for an artin algebra A. Denote by Sy,... ,S, the simple A-modules up to iso-
morphism and let h; : Xs; — S; be a minimal right X -approzimation of S;.
Then each X in X is a summand of a module which has a filtration with
factors amongst the Xs,.

There is a curious application of this fact to a partial result for the finitistic
dimension conjecture [34].

Corollary 5.3 If C = {C;pd, C < oo} is contravariantly finite, then
findim A < oo.

Recall that the finitistic dimension conjecture says that sup{pd C;pd C <
oo} is finite. A consequence of this conjecture is the Nakayama conjecture,
which says that if in a minimal injective resolution 0 = A - Iy > I} —» --- —
I; — --- each I; is projective, then A is selfinjective. In [10] we studied a
more general question, which we called the generalized Nakayama conjecture:
If A is an artin algebra with a resolution as above and I is an indecomposable
injective A-module, then I is a summand of I; for some j. These conjectures
are still unsolved in general.

Partially motivated by looking for interesting classes of examples for con-
travariantly finite (resolving) subcategories, we started to investigate syzygy
categories. For some of this work we only assumed A to be a twosided
noetherian ring. For each i > 0 denote by Q(mod A) the full subcategory of
mod A whose objects are the i-th syzygy modules, that is those C for which
there is an exact sequence

0-C—-P_ 11— =>P->P-X->0

with the P; projective. We showed that Q(mod A) is always covariantly finite
in mod A [37]. For artin algebras it is also contravariantly finite as shown
for algebras over a field in [36], and extended to artin algebras by Smalg
(see [38]). By definition Q'(modA) contains the projectives, and we clearly
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have ¥(modA) = modA. However (modA) is not in general extension
closed, actually not even closed under summands. But if it is extension closed,
then it is resolving [37]. Hence we were led to investigate when £ (mod A) is
extension closed, and we did this for an arbitrary noetherian ring A. Note that
when Q(mod A) is extension closed for an artin algebra A, then the category
Q(mod A)*, which by Theorem 5.1 is covariantly finite, is {C;idC < ¢}.
The first general sufficient condition we obtained for Qf(modA) to be
extension closed was that A belongs to a class of rings which Maurice intro-
duced in the late sixties, while looking for an appropriate noncommutative
analogue of commutative Gorenstein rings. For an integer d > 1 he defined A
to be d-Gorenstein if in a minimal injective resolution 0 - A — Iy — I; —
-—= I; - .- we have flatdim I; < ¢ for all 7 < d. The noncommutative
analogue for Gorenstein was that A is d-Gorenstein for all d, and such a A
is now called a ring satisfying the Auslander conditions. It turned out that
these sufficient conditions could be generalized, and after various stages of
improvements we were able to prove the following. Note that the extra as-
sumption of noetherian R-algebra is only used for the implication (a) = (c)
when d > 1.

Theorem 5.4 Let A be a noetherian algebra over a commutative noetherian
ring R and d > 1 an integer. Then the following are equivalent.

(a) Q(mod A) is extension closed for i < 4.

) If0 - A > Iy - L —» -+ = I, - --- is a minimal injective
resolution of A as a right A-module, then flatdimI; <i+1 fori < d.

(c) grade Exty*(C,A) > i for all C in mod AP and i < d.

(d) grade X > for X C Exty***(B,A) when B is in mod A and i < d.

The final proof is given in [41], which was our last joint paper, being
typed while I accompanied Maurice on his nostalgic tour to Europe a few
weeks before he died.

The related category Jy(mod A) = TrQ¢(mod A°P), which played an im-
portant role in Maurice’s work with Bridger from the sixties is contravariantly
finite for a noetherian ring A, but is not in general covariantly finite. There
is an interesting connection with (maximal) Cohen-Macaulay modules if A
is a local commutative noetherian Gorenstein ring of dimension d. Then
Q4(mod A) = Jy(modA) = CM(A), accounting for the fact that CM(A)
is both contravariantly and covariantly finite in mod A. We also discovered
some curious connections between Jy(mod A) and categories of modules of
projective dimension at most ¢ for some i. We worked on this in connection
with preparing for the 1994 Utrecht meeting on Cohen-Macaulay modules,
Cohen-Macaulay approximations and singularity theory. This work is still to
be written up.
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We had also started investigating noetherian rings of global dimension
two from the point of view of properties of the transpose and the modules of
grade two. This was the topic of Maurice’s last public lecture, in Mexico at
ICRA VII, and this joint work is written up in [42].

Almost all my joint work with Maurice had some connection to one of the
five headlines I have chosen. One paper which did not fit was on work with
Smalg on Galois actions, where we tried to understand some of the covering
theory from the point of view of rings.

I feel I was fortunate to have such an extensive and close collaboration
with Maurice. Working with him was exciting and stimulating, and his true
love for mathematics and its beauty had a strong influence on me. The loss
of a close collaborator and even more of a special friend, is difficult.
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The Development of the

Representation Theory of Finite Dimensional Algebras

1968 — 1975

Claus Michael Ringel

ABSTRACT. The representation theory of finite dimensional algebras
has seen a dramatic development in the last 28 years. The foundation
of the modern representation theory was laid in the years 1968 — 1975.
The aim of this historical survey is to describe the main directions of
investigations in these eight years. We will single out eight topics which
have been discussed in the years 1968 — 1975 and show their relation-
ship to the present interests. In 1968, there was the solution of the first
Brauer-Thrall conjecture. The introduction of the Auslander algebras
may be considered as the starting point for a systematic study of mod-
ule categories. The use of quivers, posets and quadratic forms are now
important tools in representation theory. Functorial methods such as
Coxeter functors and functorial filtrations of the forgetful functor were
introduced during that period in order to deal with specific classifica-
tion problems. All these methods have turned out to be very fruitful.
As we will see, the main emphasis of most investigations was directed
towards an understanding of the different representation types: finite,
tame and wild, and they were confined to specific classes of algebras.
With the proof of the existence of almost split sequences in 1975 Aus-
lander and Reiten presented a result which deals with arbitrary finite
dimensional algebras; the notion of an irreducible map and the concept
of the corresponding Auslander-Reiten quiver are now basic ingredients
of representation theory.

The Setting

Let k be a field, and A a finite dimensional k-algebra (associative, with
1). We consider representations of A, these are algebra homomorphisms
from A into the endomorphism algebra of a vector space over k, or, equiva-
lently, (left) A-modules. The A-modules which we will deal with will usually
be finite dimensional (there are two exceptions, in our discussion of the Aus-
lander algebras and in the section dealing with the possible representation
types, they will be noted explicitly).
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90  RINGEL: Representation of finite dimensional algebras 1968-1975

The classical structure theory of finite dimensional k-algebras shows that
such an algebra A has a largest nilpotent ideal J(A) (the radical of A), and
that the factor algebra A/J(A) is a product of finitely many matrix rings
over division algebras. The Morita theory asserts that the category of A-
modules is equivalent to the category of Ag-modules, where A is a basic
algebra, this means that Ag/J(Ag) is a product of division algebras. Since
the main interest of representation theory lies in properties of the category
A-mod of A-modules, we can (and will) assume that A is a basic algebra.

We will consider mainly the case when k is an algebraically closed field.
Under this assumption, it is now customary to write A as given by a quiver
with relations, thus as a factor algebra of the path algebra k@ of a finite
quiver @ modulo what is called an admissible ideal (an ideal which is con-
tained in (kQ*)?, where kQ? is the ideal of kQ generated by the arrows).
Note that this kind of presentation of A was exhibited explicitly [G2] only
during the period which we want to discuss, but the essential ingredients
had been known before: it was stressed in the Nagoya papers around 1955
that a finite dimensional algebra over a perfect field can be written as a nice
factor algebra of a hereditary algebra (such as the path algebra kQ) and
also the concept of a quiver was used for example by Grothendieck a long
time ago, under the label of a diagram scheme; it is the merit of Gabriel
to have coined the well-suited name ‘quiver’ and to have stressed its impor-
tance as a main working tool for dealing with finite dimensional algebras:
‘quiver theory’ now often serves as a denomination for the whole modern
representation theory of finite dimensional algebras.

The interpretation of the algebra A as the factor algebra of the path
algebra of a quiver allows to write the A-modules as representations of the
quiver: as given by a finite number of vector spaces V; and linear maps
Vi — V;. In this way, the representation theory of algebras turns out to be
just a sort of higher linear algebra. Conversely, many classification prob-
lems in algebra and geometry can be formulated in terms of vector spaces
and linear maps, thus they may be interpreted in terms of representation
theory. For example, the classical problem of classifying matrix pencils con-
sidered by Weierstral and Kronecker is just the problem of classifying the
representations of the quiver

77 N

o] (o]

N— A
(now called the Kronecker quiver). The path algebra of this quiver is four

0 k
The aim of the representation theory is to construct and to describe all
representations of A, but usually this may be impossible, thus one is hop-
ing to understand at least parts of the module category: on the one hand,

2
dimensional, it can be written as [k k ]
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one is interested in a description of suitable classes of representations, on
the other hand, one tries to get information on the global structure of the
category A-mod. In particular, one is looking for invariants which allow
to distinguish the isomorphism classes. Of course, any (finite dimensional)
representation can be written as a direct sum of indecomposable repre-
sentations, and the theorem of Krull-Remak-Schmidt asserts that such a
decomposition is unique up to isomorphism. Thus, it usually is sufficient
to consider indecomposable representations. Note that in general there will
be infinitely many isomorphism classes of indecomposables as already the
four dimensional Kronecker algebra shows. In case there are only finitely
many isomorphism classes of indecomposable A-modules, the algebra A is
said to be representation finite. If we are interested in determining the in-
decomposable A-modules, we may assume that A is connected: that it has
no central idempotents different from 0 and 1, since any non-trivial central
idempotent of A yields a product decomposition 4 = A; x A;, and any
indecomposable A-module is either an A;-module or an A;-module.

The setting of dealing with a finite dimensional k-algebra was enlarged
by Auslander and his school to that of artin algebras: these are rings with
center an artinian ring and being module finite over the center. In particular,
all finite rings are artin algebras.

Eight Topics in Eight Years

1. The solution of the first Brauer-Thrall conjecture (1968,
1974). The first Brauer-Thrall conjecture asserts that an algebra A is
representation finite provided that the indecomposable A-modules are of
bounded length. This conjecture was solved in 1968 by Roiter [R] using
an interesting ordering of the indecomposables. The method of proof was
formalized by Gabriel [G2] by introducing what he calls the Roiter measure
of a module M: it is an increasing sequence of numbers and it is given
by the lengths of indecomposable submodules M; occurring in a suitable
chain My C M; C --- C M; C M. The set of such sequences can be totally
ordered and in this way one obtains the ordering used by Roiter (or better:
the dual analogue).

Contrary to an assertion in the paper, the proof does not work in the
case of an arbitrary artinian ring, since an essential intermediate assertions
fails to hold in general. In 1974, Auslander [A2] gave a new proof of the
first Brauer-Thrall conjecture, and this proof indeed deals with the general
situation of an artinian ring. Auslander’s proof can be rewritten as an
assertion concerning the Auslander-Reiten quiver of A and one obtains in
this way a much stronger assertion: If the Auslander-Reiten quiver of a
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connected algebra A has a component C which contains only modules of
bounded length, then this component is finite and is the only one.

2. The classification of the k[T, T;]/(TyT;)-modules (1968). In
the same year 1968, a very interesting classification problem was solved
by Gelfand and Ponomarev [GP1], namely that of the finite dimensional 4-
modules, where A = k[T, T]/(T1T2) (here, k[T, T] is the usual polynomial
ring in two variables T}, T; and (T} T3) is the ideal generated by the element
T1T). Of course, the A-modules for this algebra A are just vector spaces
endowed with a pair of operators which annihilate each other: the operators
are the multiplications by T; and by T on the module. Note that A is
infinite dimensional, but by adding relations of the form T7' = 0 and T}* =
0, we obtain finite dimensional factor algebras B,, ,, and any indecomposable
finite dimensional A-module which is not annihilated by either 77 or T3
is actually a B, ,-module for some n,m. The problem of classifying the
k[T, T3])/(T1 T>)-modules turned out to be the final step in order to classify
certain representations of the Lorentz group, it was in this setting that
Gelfand and Ponomarev have attacked it.

The classification principle and the method of proof were later general-
ized to the socalled special biserial algebras: they are given by a quiver @
and an ideal I of relations with the following two properties: Any vertex of
Q is starting point of at most two arrows and also end point of at most two
arrows, and for every arrow (3 there are at most two arrows «, v such that
aff and B4 do not belong to I. These conditions exclude, in the language
of the representation theory of quivers to be discussed below, all possible
D, -cases, including the tilted ones. Since A is a factor algebra of the path
algebra kQ), we may consider the arrows of @ as elements of A (belonging to
J(A) \ J(A)?). The description of the indecomposable A-modules is quite
easy: It turns out that many of these modules (the string modules and the
primitive band modules) come equipped with a k-basis = which can be dis-
played as a line or a cycle (to be more precise: as the vertices of a quiver
of type A, or A,) such that the multiplication of any element of this basis
with an arrow o is either zero or a (non-zero) scalar multiple of an element
of = (and in the latter case, one has a corresponding arrow in the quiver).
We can arrange it in such a way that a scalar different from 1 occurs at most
once and only in the case of the cylic quuiver. The information given by
this display can be encoded conveniently by a formal word in some alpha-
bet; as alphabet we take two copies of the set of arrows of Q. For example,
in the case considered by Gelfand and Ponomarev one takes formal words
in the letters Ty, T3; 7', T, '. The remaining modules are built from the
primitive band modules as iterated self-extensions using (as in the case of
k[T]-modules) a Jordan normal form.

String modules and band modules can be defined for any k-algebra A.
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The decisive property of a special biserial algebra A is the fact that in this
case, these are the only indecomposable A-modules. In their proof, Gelfand
and Ponomarev had used the theory of additive relations (recall that an
endomorphism of a vector space V may be considered as a subspace of
V x V, its graph, and additive relations on V are just arbitrary subspaces
of V x V), and Gabriel has proposed to rewrite the proof using functorial
filtrations of the forgetful functor. Of importance is the fact that two such
filtrations are sufficient to work with. Now, given two filtrations of a vector
space V, there always is a basis of V which is compatible with both of them;
this is the way one obtains a convenient basis as mentioned above.

The description of the A-modules by Gelfand and Ponomarev can be
interpreted in terms of the covering theory which later was developed by
Gabriel and his students; here we deal with the special situation where all
indecomposable representations of the covering are thin (a representation of
a quiver is said to be thin provided all vector spaces used are of dimension
at most 1).

3. Wildness of algebras (1969). The features of wildness were first
exhibited by Corner as occurring for infinite abelian groups. The main idea
is the following: for certain rings R, one observes that all kinds of other rings,
even those which are considered as very pathological, can be realized as en-
domorphism rings of R-modules, or at least as factor rings of endomorphism
rings of R-modules modulo nice ideals. This then means that the given al-
gebra has modules with (nearly) prescribed endomorphism rings, and, in
particular modules with pathological decomposition behaviour. What is of
interest for us is the fact that there do exist finite dimensional algebras which
are wild in this sense: in 1969, Corner [C] has shown that the 5-subspace
problem is wild.

The n-subspace problem asks for the mutual position of n subspaces
of a vector space, equivalently, we may consider the following quiver A(n)
(called the n-subspace quiver)

0 o e 0
0
with n + 1 vertices and its representations which use only injective maps.
Since one easily sees that an indecomposable representation involving maps
which are not injective is one dimensional, there is no essential difference
between the n-subspace problem and the classification problem for the n-

subspace quiver A(n). Here we see very clearly a way for rewriting certain
geometrical problems in terms of representations of quivers.
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If n < 3, then it is easy to see that we deal with a representation
finite problem: all indecomposable representations of A(2) and all but one
indecomposable representations of A(3) are thin; the only exception has

dimension vector 1 ; 1 (here, the numbers are displayed in the shape of

the quiver and indicate the dimensions of the various vector spaces involved),
it is given by the three one dimensional subspaces k x 0, 0 x k and {(z, z) |
z€k}ofkxk.

The case n = 4 will be discussed below, let us consider now the case
n = 5, the five-subspace problem. Let us show why this problem is wild.
Namely, consider the following construction: given a vector space V and a
pair of endomorphisms ¢, of V, let F(V; ¢,¢) be given by considering the
vector space V x V together with the following 5-tuple of subspaces:

Vx0, 0xV, T(1), T(¢), T(¥),

where I'(—) denotes the graph of a given endomorphism: ['(¢) = {(z, #(z)) |
z € V}. Note that a vector space V endowed with a pair of endomorphisms
é,% of V is nothing else than a k(T},T,)-module, where k(Ty,...,Ty,) is
the free associative algebra in n generators, here, V is the underlying vector
space of the module, and the multiplication by T} is given by the endomor-
phism ¢, whereas T, acts via . The construction above yields a functor
F from the category of k(Ty,T;)-modules to the category of all kA(5)-
modules, and one can show without difficulty that F is full and faithful,
thus a full embedding. This shows, in particular, that any k-algebra which
occurs as the endomorphism ring of a k(T},T;)-module also occurs as the
endomorphism ring of a kA(5)-module.

Let us pursue these considerations. Trivially, for any n > 2, we may
embed the category of k(Ty, T;)-modules into the category of k(Ty,...,T,)-
modules, just consider the k(Tj,...,T,)-modules with trivial action by
T3,...,T,. However, the following construction G, yields a full exact em-
bedding of k(Ty,...,Ty)-mod into k(Ti,T;)-mod; given a vector space V
and n endomorphisms ¢1,...,Pp, let Go(V; é1,...,¢,) be defined as

0 1 [0
n+2 1 ..
(G ST N P )
0l | ¢ 1 0]

(with the remaining entries being zero). Now, if B is any k-algebra which
is generated by n elements, then B may be considered as a factor algebra
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of the k-algebra k(T1,...,T,), and therefore B-mod occurs as a full exact
subcategory of k(TY,...,T,)-mod, say with embedding functor Hg. Alto-
gether, we see that the composition of the functors Hg, G,, and F yields a
full exact embedding

FG,Hg: B-mod — kA(5)-mod.

For example, the path algebra kA(n) of the n-subspace quiver is generated
as a k-algebra by 2n elements (take n idempotents and the n arrows of
the quiver), thus there exists a full exact embedding of the category of all
kA(n)-modules into the category of all kA(5) modules. As a consequence,
the classification problems for the n-subspace problems with n > 5 may be
considered as being essentially not different from each other.

We should add that all these considerations do not have to be restricted
to finite dimensional modules, but work in general. Also the k-algebra
B does not have to be finitely generated. In the paper [C], Corner had to
assume that B has a generating set of cardinality less than the first strongly
inaccessible cardinal. Even this (rather weak) condition was later removed
by Shelah.

After the work of Corner, many other algebras A have been shown to
be wild, see for example [B1,B2]. In particular, the quiver K(3)

of— 3o

is wild, just consider the full subcategory of all representations of K(3)
where the upper arrow is given by an isomorphism.

In general, one should not require that there is a full exact embedding
of k(T\, T2)-mod into A-mod, but a little less, since in A-mod there may be
maps which are in some sense inessential, so that it does not matter whether
they are in the image of an embedding functor ¢: k(T}, T2)-mod — A-mod
or not. Thus, we are going to drop the requirement that ¢ should be full.
Of course, given k(Ty, T;)-modules X and Y, there should be some control
concerning the maps in Hom 4(¢X, ¢Y’) which are not in the image of «.

For example, consider the algebra C = k[T, T;, T3]/, where I is gener-
ated by all monomials of degree 2. The category B-mod and the category
of representations of the quiver K(3) are very similar: If &/ is an addi-
tive subcategory of A-mod, let (i) denote the ideal of A-mod given by all
maps which factor through an object of U, and let 7 denote the projection
functor A-mod — A-mod/(U). Let us denote by S the subcategory of all
semisimple C-modules (since C is a local algebra, the semisimple C-modules
are just direct sums of the unique simple C-module). Then the category
C-mod/(S) is equivalent to the full subcategory of all representations of
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K(3) which do not have a simple direct summand. We can rephrase this
as follows: There is an exact embedding functor ¢: K(3)-mod — B-mod
such that for any pair of K(3)-modules X,Y the space Hom 4(¢X,:Y) is the
direct sum of «(Hompg(X,Y')) and the space of all homomorphisms ¢ X — Y
which belong to (S).

Based on the known examples of what seems to be ‘wild’ behaviour,
an algebra A should be called wild provided there exists an exact functor
k(Th,T2)-mod — A-mod and an additive subcategory U of A-mod such
that the composition of F' with ny is a full embedding. There is a famous
tame-and-wild theorem by Drozd, but it uses a slightly different (and more
technical) notion of wildness. At the moment, it does not seem to be known
whether Drozd’s definition of wildness coincides with the one mentioned
here.

4. The four-subspace problem (1970). Whereas the five-subspace
problem is wild, there does exist a full classification of the indecompos-
able representations of the four-subspace quiver, as earlier investigations
of Nazarova have shown. The (apparently independent) proof by Gelfand
and Ponomarev [GP2] in 1970 has been of great importance for the further
development since the authors have introduced several new and valuable
techniques and they provide remarkable insight into the structure of the
module category.

Let A be the path algebra of the four-subspace quiver. Gelfand and
Ponomarev introduce what now are called the Coxeter functors Ct and
C~, these are endofunctors of the category A-mod which allow to construct
countably many indecomposable modules starting from the indecomposable
injective or the indecomposable projective modules, respectively. For any
path algebra of a quiver, it is very easy to construct those indecomposable
modules which are projective or injective; the modules obtained from the
projectives using powers of C~ are called preprojective, those obtained from
the injectives using powers of C* are called preinjective. An A-module
which does not have any indecomposable preprojective or preinjective direct
summand is said to be regular. Surprisingly, the regular modules form an
abelian exact subcategory 7 of A-mod, and this subcategory is serial in the
following sense: Any indecomposable regular module M has a unique chain
of regular submodules, thus a unique composition series when considered
as an object of the abelian category 7. In order to determine all regular
indecomposable modules, it is sufficient to construct those which are simple
as objects in 7, and then to form suitable extensions. It turns out that
there are six isomorphism classes of simple objects in 7 which behave in a
special way: these are the thin representations with dimension vectors of
di dy dy dy

the form 1

, where two of the numbers d; are equal to 1 and
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the remainig two are equal to 0. The remaining simple objects in 7 have

9 11 and are given by

four-tuples of pairwise different one dimensional subspaces in a vector space
of dimension 2. To deal with four-tuples of one dimensional subspaces in a
vector space of dimension 2 means to consider four points on a projective
line, and there is the well-known cross ratio which occurs as an invariant
with respect to projective equivalence. The classification of all possible
representations of the four-subspace quiver allows a complete understanding
of the mutual position of four subspaces in any projective space. Gelfand
and Ponomarev also provide a numerical criterion which allows to decide
whether a given indecompable A-module M is preprojective, regular or

(if k is algebraically closed) dimension vector

preinjective, just knowing the dimension vectord = ' "% 3 % of M.

do
By definition, the defect of M (or of d) is

5(M) = §(d) = 2do - i &,

i=1

and §( M) is negative, or zero, or positive if and only if M is preprojective,
or regular, or preinjective, respectively. Note that the defect compares the
sum of the dimensions of the four subspaces with twice the dimension of the
total space. This numerical distinction has its basis in the global structure
of the module category: the regular representations form what now is called
a separating tubular family, they separate the preprojective modules from
the preinjective ones.

The four-subspace quiver is a special ‘tame’ quiver, the remaining tame
quivers will be mentioned below: as we will see they have very similar
properties. One particular application of the representation theory of the
n-subspace quivers should be mentioned. Let us denote by L(n) the free
modular lattice in n generators. The lattice L(3) is finite, it was consid-
ered by Dedekind in 1900. The lattices L(n), for n > 4, are infinite and
Gelfand and Ponomarev have used the preprojective and the preinjective
representations of A(n), in order to shed light on the structure of L(n).

5. Auslander algebras (1971). In his famous Queen Mary Notes
[A1l], M. Auslander has given an interesting characterization of the repre-
sentation finite algebras. Let A be representation finite, and let M,,..., M,
be indecomposable A-modules, at least one from each isomorphism class.
Then M = @;_, M; is an additive generator of A-mod (this means that
any A-module is a direct summand of some power M™). Let E be the
endomorphism ring of M, this is again a finite dimensional k-algebra and
it has the following two properties: its global dimension is at most 2, its
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dominant dimension is at least 2; we recall that to assert that the dominant
dimension is at least ¢ means that the terms Iy,...,J;_; in the minimal
injective resolution

0o A - - - - =I,—>--

of oA are projective. Also conversely, every algebra B of global dimension
at most 2 and dominant dimension at least 2 is obtained in this way, and
one calls such an algebra nowadays an Auslander algebra. Actually, the
correspondence between A and E defines a bijection between the Morita
equivalence classes of the representation finite algebras A and the Morita
equivalence classes of Auslander algebras. To recover an algebra in the
Morita equivalence class of A from the Auslander algebra F, let N be an
E-module which is both projective and injective and which contains as a
direct summand any indecomposable E-module which is both projective
and injective; then the endomorphism ring of N is as required.

If we start with a basic representation finite algebra A and M is an
additive generator of A-mod, then almost always the endomorphism ring
of M will be larger than A (the only exception occurs in the uninteresting
case when A is semisimple). One may wonder whether it is of interest for
the study of representation finite algebras to deal with the much larger
Auslander algebras. However, it turns out that the Auslander algebras are
much better behaved and easier to visualize. So, when Riedtmann started
to classify the self-injective representation finite algebras, she looked at the
corresponding Auslander algebras and classified them. Of course, in the
terminology to be introduced below, for k an algebraically closed field of
characteristic different from 2, the basic Auslander algebras are just the path
algebras of the Auslander-Reiten quivers of representation finite algebras
modulo the mesh relations.

Auslander’s result has an interesting consequence: if A is representa-
tion finite, then any not necessarily finite dimensional module is a direct
sum of copies of finite dimensional indecomposable modules. The reason is
the following: let M be an additive generator of A-mod, and F its endo-
morphism ring. Then Hom4(M, —) defines an embedding of the category
of all A-modules into the category of all E-modules, and the image is just
the full subcategory of all projective E-modules. But every projective E-
module is a direct sum of the finite dimensional indecomposable projective
E-modules, and these are the images of the finite dimensional indecompos-
able A-modules.

The algebras of dominant dimension at least two are, in the terminol-
ogy used in [T], the QF-3 maximal quotient algebras. Let us recall the
relevant arguments: As defined by Thrall in 1948, a finite dimensional al-
gebra A is said to be QF-3 provided it has a minimal faithful module M
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(this means that M is faithful, and that M occurs as a direct summand of
any faithful A-module). Clearly, such a minimal faithful module has to be
both projective and injective. It follows that A is a QF-3 algebra if and
only if there exists a faithful module which is both projective and injec-
tive, thus if and only if the injective envelope of 4A is projective. Thus
we see that the QF-3 algebras are just the algebras of dominant dimension
at least 1. Let Iy = I(4A) be the injective envelope of 4A, and let B
be the maximal submodule of Ip containing 4A such that no composition
factor of B = B/ 4A is embeddable into 4A. This implies that we have
both Hom4(B, B) = 0 and Ext, (B, B) = 0. If we apply Hom4(—, B) to
the exact sequence 0 — 4A — B — B — 0, we see that the inclusion map
t: 4A — B induces an isomorphism ¢*: Hom4(B,B) — Homg(4A4, B).
The last set can be identified with the underlying set of B, thus ¢* shows
that this set B carries the structure of an algebra (namely the endomor-
phism algebra of 4B), and clearly the algebra A is embedded into B as a
subalgebra. One calls B the classical quotient algebra of A, and A is said to
be a maximal quotient algebra provided A = B. Of course, one has A = B
if and only if all the composition factors of the socle of Ip/4 A occur in the
socle of 4A, thus if and only if the injective envelope I; of I/ 4A belongs
to the additive subcategory generated by I,.

6. Representations of quivers (1972, 1973, 1974). At the same
time, when Auslander presented this general characterization of representa-
tion finite algebras, Gabriel [G1] was considering in detail the representation
finite hereditary k-algebras A, where k is an algebraically closed field. So
let us now assume that A is a connected hereditary k-algebra and that k is
an algebraically closed field. Up to Morita equivalence, A = kQ where Q is
a finite quiver without oriented cycles. What Gabriel has shown is that A
is representation finite if and only if @ is of the form A,,D,,Eq¢, E; or Eg
(this means that after forgetting the orientation of the arrows, we obtain
from the quiver one of the simply laced Dynkin diagrams which occur in
the structure theory of semisimple complex Lie algebras):

A, o—o 0— «++ —0O Es o o C o o
)
0\0 Er o s 0——0——0—0
D, O/ ——0— .+ —0 o
Es
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Moreover, in these cases, the dimension vectors of the indecomposable rep-
resentations are just the positive roots of the corresponding quadratic form
occurring in Lie theory (as the Killing form) and the dimension vector de-
termines such an indecomposable representation up to isomorphism. Thus,
the dimension vectors are convenient invariants in order to distinguish iso-
morphism classes.

Gabriel’s work was meant as a correction and completion of earlier

(unreadable and erroneous) investigations of Yoshii, and some other au-
thors (Krugliak, Backstrém) have presented corresponding corrections at
the same time. However, it was the graphical interpretation, the transla-
tion to combinatorics and the observation that there is a surprising rela-
tionship to Lie theory which marks the value of this work and which has
stimulated the further research. Indeed, already one year later (1973) Bern-
stein, Gelfand and Ponomarev [BGP] gave a new proof concentrating on
the relationship to Lie theory. Part of their work deals with the represen-
tation theory of an arbitrary finite quiver without oriented cycles, and they
use in a systematic way Coxeter functors in order to construct the corre-
sponding preprojective and preinjective representations. The Dynkin cases
A,,D,,E¢,E; or Eg are characterized as the only cases with only finitely
many indecomposable preprojectives; this condition alone already implies
that all the indecomposables are preprojective.
_ Let us come back to the four-subspace quiver, it is a quiver of type
Dy, and it turns out that similar results hold true for all quivers whose
type is one of the extended Dynkin diagrams A,,D,, E¢, E; or Eg. These
quivers are said to be the tame ones, and they have been investigated by
Donovan-Freislich [DF] and by Nazarova [N]. Again, the indecomposables
are of three different kinds: there are the preprojectives, the preinjectives
and the regular ones, and there is again the notion of a defect which yields
a numerical criterion in order to distinguish these cases. For the distinction
between tame and wild quivers we refer to Brenner (1974) [B2].

Our joint work with Dlab [DR1, DR2] has extended these investiga-
tions to the case of an arbitrary, not necessarily algebraically closed base
field k, dealing with species (as introduced by Gabriel [G2]) instead of
quivers. It is interesting that in this way all possible Dynkin diagrams
A,,B,,...,G; (and not only the simply laced ones) appear when dealing
with a representation-finite hereditary algebra; similarly all the extended
Dynkin diagramns A, = Aﬁ}’, cee ,Ggl), cee ,D‘(f) appear in the tame case. A
diagram such as B, or G, encodes a skewfield embedding F C G of degree 2

or 3. A basic algebra of type B, or G, is of the form [5 g] or [g g:l .

The relationship to Lie theory has further been strengthened in the
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meantime. First of all, Kac has shown that the dimension vectors of the
indecomposable representations of any finite quiver are just the correspond-
ing positive roots. For any positive real root, there is a unique isomorphism
class of indecomposable representations, whereas for any positive imaginary
root, there is a proper family of such isomorphism classes. Second, one can
use the representation theory of quivers and species in order to construct the
complex semisimple Lie algebras (or Kac-Moody algebras) g and even their
Chevalley Z-forms. Let us concentrate on the positive part ny of g. The
quantizations of the Serre relations for ny as introduced by Drinfel’d and
Jimbo express universal relations between the possible composition series
of representations; in three different ways quiver varieties have been used:
working over finite fields, one may count composition series, one may use
perverse sheaves working over an l-adic field, or else methods from differen-
tial geometry when working over R.

Also, the reflection functors used to construct the Coxeter functor have
attracted a lot of interest. After all, they allow to compare the representa-
tions of two algebras which are not Morita equivalent. The tilting functors
were introduced as a broad generalization of these reflection functors.

7. Representations of posets (1972, 1975). One of the main tools in
the representation theory of algebras is the use of representations of posets
and of S-spaces, where S is a poset. A systematic study was started by
Nazarova and Roiter [NR]. They and their students developed, on the one
hand, techniques for studying representations of posets, and, on the other
hand, they showed in which way many problems in algebra can be reduced
to problems dealing with representations of posets. As in the case of the
hereditary algebras, it was the use of graphical methods, of quadratic forms
and root systems which attracted the interest and stimulated the further
research. In particular, two results of Kleiner were found to be very useful:
the classification of the minimal representation infinite posets [K1] and of
the sincere representation finite posets [K2|. Here is the list of the minimal
representation infinite posets:

(L,1L,L,1) (2,22 (3,31 (4N  (52]1),

where (c1,...,c,) stands for the disjoint union of n chains with c;,..., ¢,
elements, respectively, and (4, N) is the disjoint union of a chain of 4 ele-

ments and the poset N A functorial way of constructing indecomposable
representations of a finite poset, similar to the use of Coxeter functors for
quivers, was designed by Drozd [D] and he showed that quadratic forms and
their roots play a similar role as for quivers. In [N2], Nazarova (1975) was
able to characterize the posets which are of wild type: Here is the list of the
minimal wild posets:

1,1,1,L1)  (2,1,,1)  (3,2,2) (431 (5N) (621)
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We did not yet define what is meant by the representation theory of
posets. Actually, there are two competing ways: The first one, introduced
by Nazarova and Roiter, deals with matrix representations. The aim is to
bring a given matrix whose columns are labelled by the elements of the
given poset S into normal form: here, arbitrary row transformation, but
only suitablé column transformations (depending on the ordering of S) are
allowed. The second one, that of an S-space, was popularized by Gabriel
[G3]: here, one deals with a vector space V,, and subspaces V, C V,,, where
8 is an element of S and one requires that for s < ¢, one has V, C V,.
For example, the n-subspace problem just deals with the classification of
all S-spaces where S is the discrete poset with n elements, whereas the
consideration of flags in a vector space means that one deals with S-spaces
where S is a chain. It is worthwhile to note that the two theories are quite
similar: The category rep(S) of matrix representations of S contains trivial
objects 0, indexed by the elements of S, and if we factor out from rep(S)
the ideal of all maps which factor through direct sums of copies of these
objects 0,, then we obtain a category which is equivalent to the category of
all S-spaces.

We may consider the category of S-spaces as a full subcategory of a
module category: Let S* be obtained from S by adding an element w with
s <wfor all s € §. Let I(St) be the incidence algebra of S¥; its quiver
is given by the Hasse diagram of S* and as relations one has to take all
commutativity relations. Obviously, any S-space (V,,; V,) may be consid-
ered as a representation of this quiver using as maps the inclusion maps,
thus also the commutativity relations are satisfied. Note that the incidence
algebras I(S*) of the posets (1,1,1,1),(2,2,2),(3,3,1) and (5,4, 1) are just
hereditary algebras of type Dy,Eq,E; and Eg, for S = (4,N) we obtain
a tilted algebra of type Eg; always, all but finitely many indecomposable
I(S*)-modules are actually obtained from S-spaces. Thus, we see that there
is a strong relationship between the representation theory of posets and of
quivers.

When Gabriel dealt with the representation finite quivers, he used this
relationship and worked with S-spaces. There always was the feeling that
the classification problem for modules over a k-algebra A, where k is an
algebraically closed field, should be reduceable to the handling of suitable
posets. In case A is representation finite, one may fix an indecomposable
projective A-module P, and one can show that the hammock given by the
functor Hom 4 (P, —) corresponds to the category of S-spaces for a (uniquely
defined) representation finite poset S, thus subspace considerations are suf-
ficient in order to deal at least with representation finite algebras.

8. The existence of almost split sequences (1975). In 1974, Aus-
lander began to publish a series of papers entitled Representation theory of
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artin algebras. The title already indicates that this series was meant to lay
the foundation of a general theory. The first two parts headed for a proof
of the first Brauer-Thrall conjecture and included a lot of additional basic
material. Starting with the third part [AR1], Reiten became a coauthor. It
is this third part which had the greatest impact as it contains the concept
of and the first existence proof for the almost split sequences.

The existence of almost split sequences is derived by specializing one
of the numerous compatibility formulae from Cartan-Eilenberg: given rings
A,R, a left A-module M, an R-A-bimodule M’ and an injective left R-
module I, there is a canonical isomorphism

p: Extl(M,Homgp(M',I)) — Homp(Torf(M', M), I).

Auslander and Reiten consider an artin algebra A with center R and take
as I the minimal injective cogenerator in R-mod; for any R-module X,
we denote by DX = Hompg(X,I) its dual. The A-module M is arbitrary
(but of finite length), and M’ is its transpose: Take a minimal projective
presentation of M, say write M as the cokernel of a map p: P, — Py where
Py, Py are projective and of minimal length, then the transpose Tr M of
M is just the cokernel of Hom4(p, 4A). Note that the transpose of a (left)
A-module M is always a right A-module. Of course, starting with a right
A-module M', we obtain as DM’ a left A-module. Also, Auslander and
Reiten observe that Torj'(Tr M, M) is nothing else but the factor End 4(M)
of the endomorphism ring End 4(M) modulo the subgroup P(M) of those
endomorphisms of M which factor through a projective module, thus the
right hand side is D End ,(M), and we obtain an isomorphism

p: Extly(M,DTr M) — DEnd,(M).

Assume now that M is indecomposable and not projective. Then End 4(M)
is a local ring and End,(M) is a non-zero factor ring. The elements
of DEnd,(M) are those R-linear maps a: End4(M) — I which vanish
on P(M). If o is such a map, non-zero and vanishing on the radical of
End (M), then p~!(a) yields an exact sequence with rather peculiar prop-
erties: it is non-split, but it is almost split: any exact sequence which is
non-trivially induced from it will split.

The importance of these almost split sequences cannot be overestimated,
they are now one of the main general tools in representation theory. There
are many different ways to interprete them. Both maps occurring in an
almost split sequence, the non-split monomorphism and the non-split epi-
morphism are irreducible maps: they do not have non-trivial factorizations.
These maps provide a two-step connection between the module M and the
dual D Tr M of its transpose. Actually, the construction D Tr which yields
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a bijection between the indecomposable non-projective modules and the
indecomposable non-injective modules is a major tool for constructing new
indecomposable modules from given one. In some sense, one may say that
the almost split sequences form a rather rigid corset of the module category.
This shall be explained below in more detail.

Parallel to this series of papers, Auslander and Reiten published a sec-
ond series of papers [AR2] with a rather technical name: Stable equivalence
of dualizing R-varieties. Here, the considerations are developed in a much
wider context, starting with functor categories and showing that certain
properties of additive categories are preserved when one replaces the addi-
tive category A by the category mod(.A) of finitely presented functors. Of
importance is the fact that the simple functors are finitely presented, and
a minimal presentation of such a simple functor just yields an almost split
sequence. In this way, the existence of almost split sequences has to be
considered as a rather surprizing finiteness property.

Remark concerning the contacts between the different centers.
At the beginning of the period which we report on, the various research
groups were working quite independently. At the Oberwolfach meeting on
commutative algebra in 1971, Auslander and Gabriel reported their results
concerning (non-commutative) representation finite algebras [A1,G1], and
they discussed the importance of further investigations. The survey [G2] by
Gabriel was decisive in spreading knowledge about the new developments.
The Bonn workshop 1973 brought together some of the specialists working in
the field. At that time, Dlab took the initiative to start a series of meetings
under the heading International Congress on Representations of Algebras,
the first such ICRA was organized at Carleton University Ottawa August
1975 and was very successful. The publication of the Ottawa proceedings
in 1975 by Dlab and Gabriel (Springer LNM 488) served as a first public
forum for the presentation of the different approaches.

The Representation Types

A glance at the eight topics mentioned above shows that almost all
are centered around the possible representation type of a given algebra.
Indeed, only the last topic is directed towards the understanding of the
representations of a general finite dimensional algebra. Let us discuss here
the first seven topics from a systematic point of view, the evaluation of the
last topic will be postponed to the next section.

The examples collected during the period which we discuss suggested
that there should be a division into three different representation types:
finite, tame and wild. Let us recall that the representation finite algebras
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are those which have up to isomorphism just a finite number of indecom-
posable modules. The remaining ones, the representation infinite algebras,
may have the wild behaviour as described above, and in this case it should
be hopeless to find a complete description of all isomorphism classes, at
least there are families of pairwise non-isomorphic indecomposable mod-
ules which are parametrized by an arbitrary number of parameters. On
the other hand, there are representation infinite algebras which are ‘tame’:
a complete classification is known, and irreducible families of indecompos-
ables are parametrizable by a single parameter. The conjecture that there
is such a trichotomy was formulated during the Bonn workshop in 1973 by
Donovan and Freislich, and there were furious discussions about their sug-
gestion that the relevant parameter spaces may be rational: that the one
parameter families of a tame algebra may be indexed by a line, and that
the wild algebras should have families of indecomposables indexed by linear
spaces of arbitrarily high dimension. At that time, the proposed definitions
were rather vague. The definitions for tame and wild which are in use now
are due to Drozd, using Bocs reduction he was able to prove that there
really is such a trichotomy. The investigations of Drozd also confirm the
rationality conjecture of Donovan and Freislich, and a stronger version has
been established by Gabriel, Nazarova, Roiter, Sergejchuk and Vossieck.

Of particular interest is a theorem of Crawley-Boevey which asserts the
following: If A is a tame algebra, then for every natural number d, almost all
indecomposable modules of dimension d belong to homogeneous tubes. The
modules which belong to a fixed homogeneous tube behave similar to the
Jordan blocks J( A, n) with a fixed eigenvalue A (recall that the Jordan blocks
classify the indecomposable finite dimensional k[T]-modules, and those for
a fixed eigenvalue A form a homogeneous tube). A homogeneous tube T
always contains an indecomposable module M, of smallest length, and the
indecomposables in 7 can be arranged as a sequence

M, CMQC"‘CMnCMn.H C...,

with M,, /M, isomorphic to M,,_, for all m > n > 1. In particular, the
modules in 7 are iterated extensions of copies of M;. The modules of the
form M; are said to be primitive, and one is interested to determine all
possible primitive modules.

The first case which should be considered are the tame algebras whose
primitive modules are of bounded length, so that there is only a finite num-
ber of one-parameter families of primitive modules. These algebras are said
to be domestic. They are the representation infinite algebras which are clos-
est to the representation finite ones. Typical examples are the tame hered-
itary algebras. Whereas there does exist a reasonable structure theory for
the representation finite algebras and their indecomposable representations,
not much is known yet about the domestic algebras in general.
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Now we come to the non-domestic tame algebras. The only example we
have seen above were the special biserial algebras studied by Gelfand and
Ponomarev, namely the algebras B, ., = k[Ty,T2)/(T1 T2, T{*, T;*), where
n>m > 2and n > 2 The case n = m = 2 has to be excluded, since
the algebra Bj, is domestic: all the primitive modules are of dimension
2 and there is a unique one-parameter family of such modules. Let us
consider now the algebra B3 ;. One observes that for any natural number
e, there are at least 2¢ disjoint one-parameter families of primitive mod-
ules of dimension 6e + 5. (For any sequence ¢ = (&y,...,¢,) of zeros and
ones, we construct the following word Ty T; ' T2T; 'w(e;) - - - w(e.) where
w(0) = (TT;')? and w(1) = (T?T51)?; these kinds of words give rise to
primitive band modules and one checks without difficulties that we obtain
in this way non-isomorphic ones.) It follows that the number of disjoint one-
parameter families of primitive modules of dimension d cannot be bounded
by a polynomial f(d): one says that we deal with non-polynomial growth.

There do exist tame algebras which are non-domestic but where the
number of one-parameter families of primitive modules is at most of polyno-
mial growth (in the known examples we really have at most linear growth):
the tubular algebras, but they were not yet known at that time.

Looking at the number of one-parameter families of primitive modules,
one observes a hierarchy: domestic, polynomial growth, non-polynomial
growth. However, the known examples suggest that the non-polynomial
growth behaviour is paired with a special finiteness condition: the finite
tubular type. In order to define this, we need the notion of a generic module
as introduced by Crawley-Boevey.

An indecomposable A-module M of infinite dimension is said to be
generic provided M considered as an End 4(M)-module is of finite length.
A typical example of a generic module is the following representation of the

Kronecker quiver

1
N

k(T) k(T)
u
T

here, k(T) is the field of rational functions in one variable T over the base
field k, and the maps are multiplication maps as indicated.

Let A be a tame k-algebra over an algebraically closed field k. An inde-
composable A-module P will be said to be a Priifer module provided there
exists a locally nilpotent surjective endomorphism of P with kernel inde-
composable and of finite length, such that the following additional condition
is satisfied: if U is a submodule of P of finite length, and P/U = P, & P,,
then one of the modules P,, P, is finite dimensional. Such a Prufer module
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has to be infinite dimensional, since a surjective endomorphism of a finite
dimensional vector space V can only be locally nilpotent in case V = 0.
Given a generic A-module M, let S(M) be the set of isomorphism classes
[X] of Priifer modules X which are direct summands of modules of the form
M/M', where M’ is a finitely generated A-submodule of M. Call two ele-
ments [X], (Y] of S(M) equivalent provided there are epimorphisms X — Y
and Y — X (actually, it seems that for modules X,Y € S(M) there is an
epimorphism X — Y if and only if there is an epimorphism Y — X). The
tubular type of M is given by the cardinalities of the various equivalence
classes. We conjecture that all these equivalence classes are finite and that
almost all consist of a single element. If there are n equivalence classes of
cardinality ry > ro > -+ > r, > 2, whereas all other equivalence classes are
singletons, then the tubular type of M is said to be r(M) = (r1,...,7rs).
Now finite tubular type should mean that either n < 2 or else n = 3 and
r(M) is of the form (r,2,2) with r > 2 or of the form (s,3,2) with 3 < s < 5.
Instead of looking at these n-tuples r(M) = (rq,...,7rs), we may draw a
star Tar = T,(pry with n arms of the appropriate sizes; it is obtained from
the diagrams A,,,..., A, by identifying one endpoint each. In this way,
(r,2,2) yields the diagram D, 2, and one obtains from (s, 3,2) the diagram
Es+3. Thus, to say that M has finite tubular type just means that the star
T is of the form A,,,D,,Es, E7, of Eg.

For a tubular algebra A, all but two of the generic modules have tubular
type (2,2,2,2), (3,3,3), (4,4,2) or (6,3,2), thus tubular algebras are not
of finite tubular type. On the other hand, all the tubular types which
appear for the generic modules of a non-domestic special biserial algebra
should be of the form A,. The socalled Gelfand problem deals with tame
algebras which are not polynomial growth algebras and here we find generic
modules of tubular type D, for various n. It seems that the non-polynomial
growth behaviour only occurs when the tubular types of the generic modules
involved are of the form A,, or D,,.

Altogether, we expect that there is a hierarchy of representation types
as shown in the following table; here, going down means an increase of
complexity:

finite

domestic

polynomial growth finite tubular type

wild
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The three middle boxes are the tame types. Of course, the module category
of an individual algebra may have parts which are of finite type whereas
other parts are of wild type, so some mixture will occur. But one should be
able to separate rather well the different parts.

We have mentioned above that the first seven topics discussed in our
survey are dealing with algebras of various representation types. Thus, let
us end this section by inserting the corresponding section numbers at the
appropriate slots:

1,5,6,7

4,6,7

3,6,7

The Basic Concepts

It remains to present a small outline in which way the almost split se-
quences are used as a basic framework. The information given by these
sequences is nowadays encoded in the Auslander-Reiten quiver of the alge-
bra.

Thus, let now A denote an artin algebra. Let XY be A-modules. A
homomorphism f: X — Y is said to be irreducible provided f is neither a
split epimorphism, nor a split monomorphism, but for every factorization

xIrly

of f, the map f; is a split monomorphism or f; is a split epimorphism. If we
consider an additive category as something like a ring, then irreducible ho-
momorphisms are just the ‘irreducible’ or ‘prime’ elements: those elements
which have only trivial factorizations.

Auslander and Reiten have shown: For every indecomposable A-module
X, there exists a map f: X — Y with the following properties: first, any
h: X — Z which is not a split monomorphism, can be factored through f,
and second, if Y =Y’ @ Y" with f(X) CY’, then Y” = 0. Such a map f
is (up to ismorphism) uniquely determined by X. One calls f: X — Y the
minimal left almost split map starting in X (or the ‘source’ map for X).
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There is also the dual assertion: For every indecomposable module Z
there exists a minimal right almost split map ¢g: Y — Z (a ‘sink’ map).

These source maps and sink maps usually combine to form the almost
split sequences: Let X be an indecomposable module which is not injective.
Let f: X — Y be the source map starting in X. Then f is injective and its
cokernel Y — Z is the sink map for Z. The module Z is indecomposable and
not projective, and every indecomposable non-projective module is obtained
in this way.

Of particular importance is the following fact: the sink maps and the
source maps are always irreducible maps, and they allow to obtain all irre-
ducible maps between indecomposable modules, as follows: Consider a fixed
indecomposable module X, and let f: X — Y be the source map for X. If
p: Y — Y is the projection of Y onto an indecomposable direct summand
of Y, then pf is an irreducible map starting in X and ending in an inde-
composable module, and all such irreducible maps are obtained in this way.
Using also the dual statement, we see that an irreducible map f: M — N
with M, N indecomposable A-modules can be seen in two different ways: as
part of the source map for M or else as part of the sink map for N.

The existence of almost split sequences shows that there are many irre-
ducible maps in A-mod and that one obtains at least partial factorizations
of given maps involving irreducible maps. As in the case of any ring, one is
interested in such factorizations into ‘prime’ elements. But we have to be
quite careful. First of all, we usually will not get factorizations, but finite
sums of maps which have factorizations. Also, the process of factorization
may not stop, just consider a hereditary algebra of infinite representation
type, and a map from a projective module to a regular or an injective mod-
ule. Finally, such factorizations will not be unique, as any Auslander-Reiten
sequence with two middle terms shows:

The Auslander-Reiten quiver of A is defined as follows: Its vertices
are the isomorphism classes of the indecomposable modules, and there is
an arrow [X] — [Y] provided there exists an irreducible map X — Y. In
addition, one usually marks the Auslander-Reiten translation using a dashed
line between [X] and [Z] provided there exists an almost split sequence
0 X—->Y—>2Z-0.

Given an almost split sequence X — Y — Z, decompose ¥ = ®:=1 Y,
with Y; indecomposable. We get irreducible maps X — Y; and ¥; — Z and



110 RINGEL: Representation of finite dimensional algebras 1968-1975

therefore the following meshes

The structure of the Auslander-Reiten quiver of A serves as an impor-
tant source of information concerning A. The existence of special kinds of
components will indicate the special nature of an algebra. Of particular
interest are preprojective and preinjective components, since they allow to
recover at least part of the algebra immediately. In the previous section,
we have seen the importance of tubes, especially homogeneous tubes. Many
present investigations are directed towards an understanding of the possible
structure of the components and the corresponding hidden information.

Seven Plus One?

One now may be tempted to reformulate the first main heading Eight
topics ... as Seven topics plus one ... . As we have seen, the two years
1968 and 1975 have to be considered as turning-points in the development
of the representation theory. So what about the years in between? Our
report above seems to indicate a break between the first seven topics which
are joint by an obvious thematic unity and the last one.

However, the year 1975 and the appearance of the almost split sequences
cannot be seen (and never has been seen) isolated: it is not a coincidence
that this concept appears in part III of a longer series. Of course, when
Auslander started to conceive part I and part II, he did not know that
there should exist almost split sequences in general. Indeed, he once men-
tioned that in his first thoughts he had tried to correlate the existence of
almost split sequences as a strong finiteness condition to the representation
finiteness of algebras. It was clear for him for a long time that there are
almost split sequences for representation finite algebras, so there was the
question whether finite type was a necessary condition or whether almost
split sequences existed more generally. As it turned out, and as it is shown
in part III, any finite dimensional algebra has almost split sequences. It
should be observed that the considerations of part III and the further parts
fit naturally into the context of the series which started with parts I and II.

Let us stress in which way the Auslander-Reiten work dealing with al-
most split sequences is rooted in the previous investigations, showing in this
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way the natural connection of the eight topics considered. First of all, the
first almost split sequences were encountered in the representation finite
case. Namely, if we want to present an Auslander algebra by quivers and
relations, we have to use the irreducible maps between indecomposable mod-
ules in order to obtain the arrows and the almost split sequences as relations.
The global dimension 2 of an Auslander algebra E is intimately connected
with the existence of almost split sequences: as we have mentioned, they
provide minimal projective resolutions of the simple E-modules.

We return to the year 1968 as the year when the solution of the first
Brauer-Thrall conjecture was published. The development of the Auslander-
Reiten theory is strongly linked to this topic. The Auslander-Reiten theory
is nowadays considered as the natural basis for dealing with the first Brauer-
Thrall conjecture. Also Roiter’s ordering of the indecomposable represen-
tations was simulated by Auslander and Smalp in terms of the Auslander-
Reiten theory, when the preprojective partition was introduced.

The Auslander-Reiten theory is centered around the construction D Tr,
that of the dual of the transpose of a module. Note that this construction
has a similar effect and may be used in the same way as the Coxeter functors.
The similarity was first analyzed by Brenner and Butler, and Gabriel showed
the precise relationship: consider the path algebra of a finite quiver without
oriented cycles, so that both constructions are defined. We are dealing with
two endofunctors which just differ by a sign o. If V' is a representation of the
quiver @), say given by the vector spaces V; (where 1 is a vertex of @}) and
by linear maps V,,: V; — V; (where a: i — j is an arrow) we define oV =
(Vi; —=Va). Also, given two representations V = (V;; V), W = (W;; Wy) of
Q, amap f = (fi): V — W is given by maps f;: V; — W; satisfying the
obvious commutativity relations, and we define of = (f;);. We obtain in
this way a functor ¢: k@Q-mod — k@Q-mod which is an automorphism of the
category. What Gabriel has shown is that we may identify the Auslander-
Reiten functor D Tr with ¢C*, but not necessarily with C* itself. In order
to see the difference, we note the following: If the underlying graph of @
is a tree or, more generally, does not have cycles of odd length, then oV
is isomorphic to V, for every object V. But this is no longer true if there
are odd cycles and the characteristic of k is different from 2. For example,
consider the thin homogeneous representations of the quiver Al,z, they are

of the form
50\ = \ /

and are pairwise non-isomorphic, for A € k. Note that we have ¢ S()\) ~
S(—A), thus, if the characteristic of k is different from 2, then ¢.S(}) is not
isomorphic to S(\). Note that in this case we have Ext!(S()),C*S(\)) = 0,




112 RINGEL: Representation of finite diinensional algebras 1968-1975

whereas, of course, Ext'(S()), D Tr S(\)) # 0.

For some indecomposable representations V, the representations C*V
and D TrV may be isomorphic, in particular this is true in case V and
therefore D Tr V is uniquely determined by the dimension vector. Actually,
the Coxeter functor has been used mainly for those modules where it coin-
cides with D Tr. It is the Auslander-Reiten construction D Tr which plays
the decisive role. Many of the investigations carried out before 1975 were
based on an explicit or at least implicit use of Coxeter functors (we mention
the topics 4, 6, 7). The interpretation of C* as a sort of substitute for D Tr
shows that the appearance of the Auslander-Reiten paper in 1975 should
be considered as a natural closing: The Auslander-Reiten theory serves in
many ways as the proper setting for the previous investigations.

As we have noted in [1], it is very intriguing to see the interplay be-
tween the homological and categorical methods of the Auslander-Reiten
theory and the combinatorial approach developed in Moscow, Ziirich and
Kiev. A convenient way in order to determine the module category of suit-
able algebras is to work inductively, using one point extensions and the
representation theory of posets. At any step, the best way to obtain the
poset needed is to determine the corresponding part of an Auslander-Reiten
quiver. Note that the meshes of the Auslander-Reiten quiver explain well
the structure of the posets which arise. The concept of a hammock inter-
relates these categorical and combinatorical features. By now, almost all
combinatorial methods in representation theory have found a homological
interpretation, and it is the Auslander-Reiten theory which usually is in-
voked to do so. The different approaches which were established during the
period 1968 to 1975 now have to be seen as parts of a unified theory.

Final remarks.

We have selected those topics treated between 1968 and 1975 which are
still of utmost interest and which were brought to a satisfactory state then.
There had been attempts to deal with other open questions such as the
second Brauer-Thrall conjecture and the Gelfand problem, but they were
unsuccessfull at that time. We admit that we have bypassed two major
treatises which appeared during the period in question. First, there is the
work of Auslander and Bridger [AB] from 1969, but it has to be consid-
ered as a general study in homological algebra not being confined to finite
dimensional algebras. Second, Tachikawa’s investigation [T] dealing with
QF-1 and QF-3 rings was published in 1973, its main interest however lies
in generalizing results known for finite dimensional algebras to more general
classes of rings. As a main principle, the discussion has been concentrated
on the core of the subject. We have left aside the relationship to ring theory,
to model theory and to algebraic geometry, but also possible applications.
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Some readers may miss a stronger insistance on the functorial approach
to representation theory. The developments of these years can be considered
also in the general framework of functor categories (after all, any module
category is a functor category), for a short outline let me refer to section 9
of [2] which deals with the same period. However, in my opinion, the use
of functor categories was not one of the decisive themes during the period
in question. Note that the basic references such as Gabriel’s thesis and
Auslander’s La Jolla paper on finitely presented functors were published
before that time and the main emphasis during the period 1968-1975 was
shifted towards the working with concrete algebras, modules, and exact
sequences. Of course, the homological and categorical knowledge which was
assembled before was kept in mind and was properly used, but there was a
strong reluctance to engage in general nonsense. '
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ALGEBRAIC GEOMETRY OVER Q

LUCIEN SZPIRO

In memory of Maurice Auslander

In 1978 I gave a talk at the ENS in Paris. The title was “Faisceaux
arithmétiques coherents”. My goal was to introduce the mathematical public
to what I called “Arakelov theory”. To justify this introduction I explained
what could be done with the idea of Arakelov and Parshin: “Put metrics at
infinity on vector bundles and you will have a geometric intuition of compact
varieties to help you”. I also explained that my seminar [Sz 1] written in
geometric language, could be considered as a book of conjectures once one
knew the translation of effective divisor, Kodaira-vanishing theorem, bounded
families, Hodge index etc. .. Needless to say I did not raise enthusiasm at this
point!

I present here the work that has been done on this program.

1. Faisceaux arithmétiques cohérents.

1-1 Heights.

Let K be a number field. The local-global equality defining the height of
a point x € P*(K) is: (with L := O(1))

[Isup|z;jv
1 vol(Og) 1 v i
(*)h(x) = K- QIOgVOI(L/Ex) T K: RIOgN(E 2;0k)

where Ex is the section of P3, — Spec Ok corresponding to the point x.
This formula teaches us many things:
(1) It is a Riemann-Roch theorem in dimension one analogous to x(L) =
degL — g+ 1 on a curve.
(2) The height is the “intersection” of a scheme of dimension 1 with a
cycle of codimension 1. The fundamental theorem on heights is typical of
the type of results one is able to get about Q:

Theorem 1 (Northcott’s theorem).
Givend € N and A € Ry the set

{x € P(®)|h(x) < A; deg[K(x) : Q] < d}

1s finite.
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As a corollary, once one knows h (the Neron-Tate height on an abelian
variety A) one gets the finitness of the torsion of A(K) because (h(P) =
0 < Phas torsion). One also gets: [weak (Mordell-Weil) = (Mordell-Weil
(A(K) is of finite type over Z))].

1-2 Basic theorems of algebraic number theory

One can now prove, in the language of metrized line bundles on SpecOy,
the following classical results: ¢l(O/K) is finite, |dg| > 1, Dirichlet units
theorem, and that for a fixed di there is only a finite number of K possible.
In fact this last statement is not sufficient for the purposes of this paper. One
needs — and one proves — the following

Theorem 2.

Given n € N and a finite set of primes py — p, in Ok . The set of number
fields L such that[L : K] < n and Op is ramified over Ok only over the p;s
is finite.

The proof of this is not “arakelovian”. One has to bound the wild ramifi-
cation (something false in characteristic p > 0). This is typical: arakelovian
methods give the finiteness of certain objects in Q, then the arithmetic allows
one to work over a given number field. In particular theorem 2 is needed to
prove the weak Mordell-Weil theorem.

1-3 The paper of Arakelov

In 1972 Arakelov introduced an intersection theory on arithmetic surfaces
with the following properties:
(i) The theory satisfies an Adjunction formula (with a “grain de sel” when
the divisor is not a section).
(i1) The theory extends the Neron-Tate pairing on divisors of degree zero.
One should remark at this point that an arithmetic surface X — SpecOg
is analogous to a surface fibered over a compact curve but with no fixed
part in the Jacobian. In fact the Neron-Tate height is zero on the fixed
part and not only on torsion points.
(ii1) The theory of admissible metrics he introduced are of deep arithmetic
content. Two cases have been worked on extensively :
a) the case of elliptic curves has been worked out quite completely in
[Sz 2] after a start in [F 1].
b) the self intersection (wx,, ‘wxo, ) is a new invariant for curves of
genus at least 2. It is exploited below (2-1).

1-4 Cohomology of coherent sheaves

Two versions of the Riemann-Roch theorem computing the volume for
the Quillen metric of Rf, E for a metrized line bundle on a generically smooth
X — SpecOg has been proposed by Gillet-Soulé and Faltings. One should
note that it is not clear that the two versions of the Riemann-Roch coincide.
The most useful part of a Riemann-Roch theorem is in its leading term:
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Theorem 3 (The arithmetic Hilbert-Samuel theorem for generically
smooth varieties).
Let L be a positively metrized ample line bundle on f : X — SpecOy,

pdtt
(d+1)!
This can be used as an alternative definition of (L --- L), (d+ 1 times). (d

is the dimension of the generic fiber). The following corollaries were indicated
in my talk in ’78:

ifn > 0 then — log volpa(f L®") = (L L)+ o(ndth)

Corollary 1 (existence theorem for small sections).
If(L---L)>0 and n>> 0 there exists an s € f, L®" such that

lIsllza, <1

for every place o at infinity.
Proof. Apply Minkowski’s famous theorem on lattice points.

Corollary 2.
If H is numerically ample and (Lyg - Lyg --- Lyy) (d times) is zero then
(L-L---L) <0(d+ 1times). (The index theorem is most striking when
=1:(L-H =0 implies (L- L) < 0))

1-5 More applications of Corollary 1.

The existence of small sections is crucial in many cases; we list a few below:
(One should note the paper of Abbes and Bouche which gives in less than
30 pages a self contained proof of theorem 3 ([A-B])) (cf. also [R]).

(1) (wxox "wxox) 2 0 g 21 (Faltings [F 1))
(ii) A second proof of the Mordell conjecture (Vojta [V])
(iii) Miyaoka’s c? < 4c, for stables vector bundles on curves g > 2

(iv) My proof of Bogomolov’s conjecture generalizing Raynaud’s theorem [Sz 2]
(v) Shouwu Zhang’s Nakai Moisheson’s criterion of ampelness [Zh 1]

1-6 The degree of a subvariety is the self-intersection.

Theorem 3'(arithmetic Hilbert Samuel for any variety). Let L be a
positively metrized ample line bundle on f : X — SpecOy, then if n > 0 one
has

ndtl d+1
—logvolpz f, L®" = (ci——i-T)i(L .- L) + o(n?t1)
when the L? norm is computed on the smooth locus of the reduced variety.

This is deduced from theorem 3 by S. Zhang in [Zh 2] using resolution of
singularities).
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The next useful result is:

Theorem 4.
The cut out of a small hyperplane section gives a subvariety of small degree.

(This is made precise in ([F 2]). This statement with corollary 1 of theorem
3 is what is needed of the theory in the proof by Faltings of his famous
“product theorem”. Then, with that in hand, one is able to prove Lang’s
conjecture for abelian varieties:

Theorem 5. Let A be an Abelian variety over a number field K and let X
be a subvariety of A. Then X(K) is contained in a finite union of B;(K),
where the B; are translates of proper sub-abelian varieties of A.

1-7 Grothendieck-Riemann-Roch?

For a morphism X Ly over SpecOy a few cases have been done:
(1) Max Noether’s formula 12X (Ox) = ¢ + 4c2 (Faltings [F 1])
(i1) Max Noether’s formula on M, (L.Moret-Bailly [M-B 1})
(ii1) Functional equation of 6 functions (L. Moret-Bailly [M-B 2])
(iv) ¢1(Rfy) for f a local complete intersection (Lin Weng [W])
(v) e1(Rfy) for Macaulay schemes (R. Elkik ([E 1], [E 2])

2. A la recherche de petits points: Numerical properties of the

relative dualizing.

To try to get (conjecturally so far) effectivity statements I proposed in [Sz 1]

to look at small points. The reasons were:

a) the Parshin-Kodaira construction tells us that one is interested in
finding an upper bound for the quantity (wx/o )?,

b) the following lemma that I had proved:

Lemma 5.

(wxjox "wxjox) < (—Ep)(29 — 2)(29)
where Xk is a curve of genus g > L and Ep the section of X — SpecOg
given by a rational point P € Xg(K).

2-1 wx/o, is big (i.e. points are not too small).

Theorem 6 (discreteness of algebraic points).

Let X be an arithmetic surface of genus g > 2 and X “— A an embedding
of Xy in a polarised abelian variety, then there exists an € > ( such that
{P € Xk (Q)|h(P) < €} is finite except perhaps when P “divides” WX/OK -
When X is smooth over QO then wg{ Jox > 0 is equivalent to the full finiteness
statement above.

This result, which generalized Raynaud’s famous theorem on torsion

points, was conjectured by Bogomolov. The exceptional case is very in-
teresting. It gives an arithmetic meaning to the Arakelov invariant wg( JOx -
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To prove that w¥ jox =0 implies that there is an infinite sequence of points

¢, € X(Q) with A(z,) — 0, I needed the fact that the linear system f*“";‘c)'?ox

has no fixed part. This has been proved by Kim ([K]). A more general theorem
has been obtained by S. Zhang [Z 1].

Theorem 7 (Nakai Moisheson theorem for arithmetic surface).

If L is numerically ample (i.e. (L-L >0 L-D > 0 for any effective D) then
L®" is generated by its sections that are smaller than one in the L? norm,
provided n >> 0.

We have recently, with Ullmo and Zhang, proved that the generalized Bo-
gomolov conjecture is equivalent to the equirepartition of small points [SUZ].

2-2 When is (wxjo, -wxjox) > 07
S. Zhang [Zh 2] proved the following:

Theorem 8.
If X — SpecOk is semi-stable and not smooth of genus g > 2 then

(wxjox "wxjox) > 0.

In the smooth case not everything is known. The following authors have
given examples of (wx/o, - wxjo,) > 0 for smooth fibrations. (Burnol), (S.
Zhang), (Mestre, Bost, Moret-Bailly).

2-3 wx/o, must be small

To prove such a statement I have in [Sz 1] a program covering two points
(i) - Kodaira vanishing
(ii) - Kodaira Spencer class.

In fact (i) was essentially solved by Miyaoka 10 years ago:

Theorem 9 (Miyaoka).
If E is a stable vector bundle on an arithmetic surface then ¢} < 4c,.

This has been written up by Moriwaki. The vanishing theorem is then
deduced by the Mumford-Reider method. C. Soulé has published the proof
of the following [S 1]:

Corollary 10.
If L is a numerically ample line bundle on an arithmetic surface and s €
R, L®~! then ||s||rz > e (loge = 1).

2-4 The instrinsic small points conjecture.

I have made numerous variations on the “small points” I had obtained in
the geometric case [Sz 1]. The following is a version I rather like: Let Xf be
a curve of genus g > 2 over a number field Ko. Then there exist constants
A(n) and B(n) depending only on the curve over Ky and on the integer n
such that : if (K : Q) < n, for every P € X(K) 3 P’ € X(Q) such that
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(i) E3 < [K(P') : Q)(A(n)log Dk + B(n))
(i) (Ep-Ep/) < [KP,P'): Q(A(n)logDxk + B(n)).

This implies a strong effective Mordell conjecture which, if proved for only
one curve, would imply the (a,b,c) conjecture (or the conjecture of discrim-
inant for elliptic curves) — a result of L. Moret-Bailly and myself. In this
direction note the theorem of E. Ullmo:

Theorem 11.
For every point P € X(K) there exists a Q@ € X(Q) such that (Ep -
EQ)finite = @ with height (Q) bounded.

Of course there remains the problem of finding an upper bound for (Ep -
EQ)e !

3. What is our subject?

3-1 Integral models or adelic studies

The difficulties of looking at the geometrical model, integral over SpecQk,
has lead many authors to try to go back to the Weil-adelic point of view. In
this direction S. Zhang [Zh 2], Rumely, Soulé-Gillet-Bloch have developed an
adelic Arakelov theory. In [Zh 2] S. Zhang uses his theory to prove Theorem
8.

3-2 What metrics to choose
Each metric has its problem

i) Faltings put [w A@ on R Q) for A an abelian variety with the success
we know. 1t lead him to ask himself the purely arithmetic question of how
to evaluate the discriminant of the kernel of an isogeny. This is a good
example of the following philosophy:

@) determine a statement on Q using a metric (here prove that the modular
height has logarithmic singularities and satisfies Northcott’s theorem)

B) Then use arithmetic (here Raynaud’s (p, ... ,p) theorem and Grothen-
dieck-lllusie’s “Barsotti-Tate tronqués”)

i) S. Zhang these days seems to prefer the Poincaré metric to Arakelov’s
original one for it extends over the closure of the Deligne-Mumford com-
partification of M,

ili) In defense of admissible Arakelov metrics I will quote:

a) it extends Neron-Tate pairing (hence Theorem 6)

B) w% JOx is a height with log singularities on M, as the work of Jorgen-
son on Faltings’ § function shows

v) 1 proved in [Sz 2] that 12 degarakelov (w) = 10g Dmin for an elliptic curve

iv) Soulé, Gillet, Bismut have choosen the Quillen metric for it is the one that
gives them a Riemann-Roch theorem.
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3-3 Galois action

It is my conviction that to really prove statements about a number field
(or, better, on Q) and not on Q (as an inductive limit) one has to put not
only metrics at infinity but to take into account the Galois action.

Faltings [F 3] is, as I note above, a perfect example.

To give a chance to the opposite opinion I will note two things:

a) My conjecture 2-4 about intrinsic small points is purely on Q (except

that the discriminant Dg is there).

B) E. Ullmo has proved the following:

Theorem 12.

Let X be an semi-state elliptic curve, d = -l%log(Dmin) then for every e > 0
there exists only a finite number of torsion points P in X(Q) such that
—¢%/[K(P) : K] < d—¢. Here ¢p is the Q-divisor that makes Ep — Eq+ ¢p
purely of degree zero.

This is a clever corollary of [Zh 1] and [Sz 2]. If d > 0 (ie. if X does
not have good reduction). Theorem 12 implies that the set of torsion
points which always specialize inside the connected component of
the Néron model is finite over Q. This could be obtained by Galois
considerations using Serre’s theorem on the irreducibility of the Galois image
in Gly(F) for 1>» 0. Here the proof is global and arakelovian.

Added in September ’96:

The Bogomolov conjecture for curves was proved in June 96 by E. Ullmo
(to appear). Using his method (a smart double use of the equidistribution
theorem [SUZ]) S. Zhang proved the general case in July 96 (to appear). In
particular E. Ullmo proves in his paper: (wx/o,)? > 0 for every arithmetic
surface of genus greater than one.
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